SOGI-based Flexible Grid Connection of PV Power Three Phase Converters under Non-ideal Grid Conditions

Rabeh Abbassi
College of Engineering, University of Hail, Hail, Kingdom of Saudi Arabia
University of Tunis, ENSIT, LaTICE Laboratory, Tunisia
Higher Institute of Applied Sciences and Technology of Kasserine, University of Kairouan, Tunisia
r_abbassi@yahoo.fr

Abstract—This paper proposes a control strategy of improving the power quality of the energy exchanged between a photovoltaic generator (PVG) and an unbalanced grid. A voltage source inverter (VSI) allowing the control of the zero-sequence during unbalanced regimes is proposed. A Second-Order Generalized Integrators-Based Approach (SOGI-BA), which suitably fits with the network's imbalances while ensuring the perfect isolation of the PVG from the adverse effects of the imbalance, is investigated. The investigation will focus mainly on three control objectives: the generation of a balanced current system, the active and reactive power's dependent control, and the elimination of the second frequency DC bus voltage fluctuations. The performance of this new approach is approved by various tests via MATLAB environment simulations.

Keywords—power quality; photovoltaic generator; voltage source inverter; active and reactive power dynamic control; voltage ride-through; ancillary services; symmetrical components; SOGI integrators

I. INTRODUCTION

Electronic power converters are a technology that allows efficient and flexible interconnection of different types of generators to the utility grid [1-3]. With the growing trend to increase the integration rate of distributed generation based on renewable energy systems (RES), it is required to pay a particular attention to converters interfacing with the grid [4-5]. This requirement is a result of their important role as “synchronous converters” in future power systems. This is analogous to the critical role that the synchronous machines play in centralized power systems [6]. In addition, the role of the filter, usually dominated by inductors, remains crucial especially during the transitional operation phases. Moreover, a further complication that derives from the management of the fluctuating power produced by the distributed generation systems, leads to the use of multiple voltage levels and thus more complex structures of converters [7]. Also, challenges and opportunities for the design and control of the grid side converter (GSC) are strongly related to the availability of new powerful and intelligent computing devices [8-10]. These devices must be controlled to obey the need to operate with the lowest possible switching frequency in order to control the highest power level.

Various control schemes for balancing the output voltages of the grid-side converter (GSC) have been published [11-17]. The majority of them relies on vector (dq) control. A current and voltage dual-loop control method relying on instantaneous active and reactive power theory is suggested for the GSC in [3]. Although this method shows excellent performance under balanced grid states, it is unable to convert AC quantities to DC quantities allowing PI controllers to process them quickly while ensuring zero error in steady-state [4]. However, under faulty grid conditions, the appearance of the negative sequence decreases the control accuracy. To resolve these drawbacks, an improved approach using a 4-leg inverter is suggested in [5] to allow a relatively low degree of imbalance. Five reference current generation techniques have been developed in [18-19] to generate sinusoidal currents of the symmetrical sequences. In the same context, a simplified repetitive predictor-based grid-voltage feed forward approach has been designed for grid-tied high-power VSI [16]. A phase locked loop-free sliding-mode-based power control for grid-tied VSIs under unbalanced grid conditions has been proposed in [21]. In addition to the emphasis on design and control of converters connected to the network, other basic and advanced topics related to synchronization with the network and control of PV systems under grid defects have been analyzed in [22-24].

To address the above issues, the present paper proposes an oriented control contribution to implement new concepts to remedy the interaction of the symmetrical components and thus manage the oscillations of the active and reactive powers. This contribution will aim achieving the safety of the operation and the continuity of service of the photovoltaic generator (PVG) connected to the distribution network. In order to ensure a coordinated control of the active and reactive powers for a better integration of a PVG into an unbalanced electrical grid, new control algorithms for the GSC during grid imbalances are proposed below. After presenting the PV generator modeling and control, the main objectives of this work are:
To introduce symmetrical sequence generation using fortessue theory and its drawbacks.

To develop and implement in MATLAB the proposed SOGI-BA control algorithms for the GSC with LCL Filter.

To present and discuss the results of time domain simulations under various symmetrical and asymmetrical conditions.

To outline the conclusions and suggest future work.

II. PV GENERATOR MODELING AND CONTROL

Accuracy is the most important factor to take into consideration when selecting an appropriate simulation model. The system configuration adopted in this work is the intermediate DC bus one depicted in Figure 1.

III. INTRODUCTION TO SYMMETRICAL SEQUENCES GENERATION

A. Using Fortescue Theory

Traditionally, the analysis of three-phase systems has been carried out thanks to the symmetrical components making it possible to easily extract the characteristic information of such systems. The transformation of the space vector is derived from that of the symmetrical components. The Fortescue transformation, applicable to sinusoidal function phasors, allows the analysis of asymmetrical three-phase systems under sinusoidal conditions. The application of this transform to temporal quantities is given by (1), (2) and (3) leading to positive, negative and zero sequences, respectively [5]:

\[
\begin{bmatrix}
V_p^p \\
V_p^n \\
V_p^z
\end{bmatrix} =
\begin{bmatrix}
V_p e^{j(\omega t + \theta_p)} \\
V_n e^{j(\omega t + \theta_n)} \\
V_z e^{j(\omega t + \theta_z)}
\end{bmatrix} =
\begin{bmatrix}
F_p \\
F_n \\
F_z
\end{bmatrix} \begin{bmatrix}
\frac{1}{3} \\
\frac{1}{3} \\
\frac{1}{3}
\end{bmatrix}
\begin{bmatrix}
1 & a & a^2 \\
a & 1 & a \\
a^2 & a & 1
\end{bmatrix}
\begin{bmatrix}
V_p^s \\
V_n^s \\
V_z^s
\end{bmatrix}
\tag{1}
\]

\[
\begin{bmatrix}
V_N^p \\
V_N^n \\
V_N^z
\end{bmatrix} =
\begin{bmatrix}
V_N e^{j(\omega t + \theta_N)} \\
V_n e^{j(\omega t + \theta_n)} \\
V_z e^{j(\omega t + \theta_z)}
\end{bmatrix} =
\begin{bmatrix}
F_N \\
F_n \\
F_z
\end{bmatrix} \begin{bmatrix}
\frac{1}{3} \\
\frac{1}{3} \\
\frac{1}{3}
\end{bmatrix}
\begin{bmatrix}
a & 1 & a^2 \\
a^2 & 1 & a \\
a & a^2 & 1
\end{bmatrix}
\begin{bmatrix}
V_p^s \\
V_n^s \\
V_z^s
\end{bmatrix}
\tag{2}
\]

\[
\begin{bmatrix}
V_z^p \\
V_z^n \\
V_z^z
\end{bmatrix} =
\begin{bmatrix}
V_z e^{j(\omega t + \theta_z)} \\
V_n e^{j(\omega t + \theta_n)} \\
V_z e^{j(\omega t + \theta_z)}
\end{bmatrix} =
\begin{bmatrix}
F_z \\
F_n \\
F_z
\end{bmatrix} \begin{bmatrix}
\frac{1}{3} \\
\frac{1}{3} \\
\frac{1}{3}
\end{bmatrix}
\begin{bmatrix}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{bmatrix}
\begin{bmatrix}
V_p^s \\
V_n^s \\
V_z^s
\end{bmatrix}
\tag{3}
\]

where: \(a = e^{j\frac{2\pi}{3}} \).

B. Positive Sequence Calculation on \(a\beta \) Reference Frame

The Clarke transformation can be applied to calculate the components of the \(abc \) voltage vector in the \(a\beta \) reference frame:

\[
\begin{bmatrix}
v_a \\
v_b \\
v_c
\end{bmatrix} =
\begin{bmatrix}
v_a \\
v_b \\
v_c
\end{bmatrix}
= \begin{bmatrix}
1 & \frac{1}{2} & -\frac{1}{2} \\
0 & \sqrt{3}/2 & -\sqrt{3}/2 \\
-\frac{1}{2} & \frac{1}{2} & 0
\end{bmatrix}
\begin{bmatrix}
v_a \\
v_b \\
v_c
\end{bmatrix}
\tag{4}
\]

In the same reference frame, the instantaneous positive sequence voltage can be expressed by (5):

\[
\begin{bmatrix}
v_a^p \\
v_b^p \\
v_c^p
\end{bmatrix} =
\begin{bmatrix}
v_a \\
v_b \\
v_c
\end{bmatrix}
= \begin{bmatrix}
F_a \\
F_b \\
F_c
\end{bmatrix}
\begin{bmatrix}
v_a \\
v_b \\
v_c
\end{bmatrix}
\begin{bmatrix}
1 & 1 & 1 \\
1 & -e^{-j\frac{2\pi}{3}} & -e^{-j\frac{2\pi}{3}} \\
1 & e^{-j\frac{2\pi}{3}} & -1
\end{bmatrix}
\begin{bmatrix}
v_a \\
v_b \\
v_c
\end{bmatrix}
\tag{5}
\]

In time-domain, \(q \) is defined as a phase-shift operator [25]. It allows the generation of the quadrature-phase signal (90-degrees lag) of the original in-phase signal of \(a\beta \) voltage vector. A disadvantage of Fortescue components is that the transformation matrix is complex, which poses serious difficulties. For these reasons and others, new techniques such as SOGI have been proposed for the synthesis of symmetric sequences.

IV. SYSTEM CONFIGURATION OF SOGI-BASED CONTROL FOR GSC WITH LCL FILTER

A. SOGI for Quadrature Signal Generation (QSG)

To generate 90 degrees phase shifted signals of the components \(v_a \) and \(v_p \), various techniques are conceivable.
Given the inadequacy of these techniques, in this work we have resorted to the use of a generalized second-order integrator-based PLL (SOGI-PLL) [12-13] whose base is illustrated in Figure 2. The transfer function is as follows:

\[
\begin{align*}
D(s) &= \frac{v'}{v} = \frac{k_\omega v}{s^2 + k_\omega s + \omega^2} \\
Q(s) &= \frac{q_\omega v}{v} = \frac{k_\omega q}{s^2 + k_\omega s + \omega^2}
\end{align*}
\]

(6)

Given the inadequacy of these techniques, in this work we have based Flexible Grid Connection of PV Power Three Phase Converters under Non-ideal ...

Based on the previous mathematical foundations, the schematic of double SOGI-QSG-based symmetrical sequences generation (DSOGI-QSG) is depicted in Figure 3 [25].

\[v' = Q = v' = |Q| = \left| Q \right| = \sqrt{\left| Q \right|^2 + \left(\omega - \omega_0 \right)^2} \]

(7)

\[D = \theta_0 = \tan^{-1} \left(\frac{\omega - \omega_0}{k_\omega} \right) \]

(8)

Fig. 2. Equivalent schematic of the SOGI-QSG

\[G_{cL}(s) = K_0 \frac{s}{s^2 + 2\omega_0 s + \omega_0^2} \]

(11)

\[i' = \frac{P}{\sqrt{V}} \quad v' = g' \cdot v' \]

(12)

After having generated the symmetrical sequences' components referring to the stationary reference frame \(a\beta \), the following section focuses on the implementation of the proposed control approach in case of the connection of the GPV to an unbalanced grid via the GSC and an LCL filter.

B. LCL filtering Model

As shown in Figure 1, the passive damping at the LCL filter is ensured by the resistors in series with the capacitor [19]. If no damping resistors are integrated, the transfer function is:

\[v_{r,s}(s) = \frac{1}{L_C s^2 + (L_C + L_g) s} \]

(9)

Otherwise, in the presence of filter damping resistors, such a function is rewritten:

\[v_{r,s}(s) = \frac{C_R s + 1}{L_C s^2 + \frac{C_R (L_C + L_g) R}{L_g^2} s + \left(L_C + \frac{L_g^2}{L_C} \right) \frac{R}{L_C}} \]

(10)

The main contribution of the resistors \(R_c \) is to attenuate the peak of the filter transfer function when only the inductive and capacitive elements are present.

C. Proportional Resonant Current Controller for the Inner Loop Control of GSC

For the GSC inverter, one of the key objectives is the accuracy of the inner loop control of the converter. Knowing that various types of controllers can be introduced to ensure this task, the proportional resonant (PR) current controller is used in this paper thanks to the simplicity of its implementation and its solid performance. However, it should be noted that for reasons of stability, which require the implementation of a damped or bandpass structure, the transfer function is expressed by:

\[G_{cL}(s) = K_0 \frac{s}{s^2 + 2\omega_0 s + \omega_0^2} \]

(11)

D. Current Reference Generation

Under unbalanced conditions, the simplest strategy for power control is to keep the injected currents into the grid sinusoidal and balanced. This is the subject of the Balanced Positive Sequence Control (BPSC) [25]. The main scheme of the proposed control approach is depicted by the schematic in Figure 4. If the quality of such currents is crucial, only the components of the positive sequence of the grid voltages is used to calculate the grid currents references as follows:

\[i' = \frac{P}{\sqrt{V}} \quad v' = g' \cdot v' \]

(12)

The reference current vector \(i' \) is perfectly sinusoidal and balanced. Under unbalanced conditions, the instantaneous active power delivered at the point of common coupling (PCC) is different from its reference \(P' \) due to the interaction between the positive sequence of the injected current \(i'' \) and the negative sequence of the grid voltage \(v'' \). Indeed:
Here, \(\rho_{2n} \) is the power fluctuating at the second harmonic frequency. If the reference of the reactive power \(Q_g \) is set to zero, its instantaneous value can be calculated as:

\[
Q_g = \| v^* f^n \| = \| v_f^n f^n + v_h^n f^n \| \tag{14}
\]

where \(v_f^n \) is the amount of reactive power oscillating at twice the fundamental grid frequency. In order to provide a smooth tracking capability and achieve zero error during the steady state condition, PR current controllers are applied for the inner current control loop of the GSC inverter.

V. SIMULATION RESULTS AND DISCUSSIONS

This section focuses on the MATLAB simulation results of the proposed algorithms. A detailed comparative study was carried out to highlight the performance of the DSOGI-BA. The structure of the implemented simulation model consists of a grid-tied PV system, as presented in Figure 1, where two power electronics converters ensure the interfacing with the grid. The first one is the MPPT-controlled boost DC-DC converter. The second is the grid-side converter delivering 15kW to the grid. The simulated fault consists of a three-phase voltage drop affecting the three phases of the network with respective decreases of 75%, 50% and 25% of amplitude on phases a, b and c at t=0.1s (Figure 5(a)). It is worth noting that the technique of filtering and generating the quadrature signal on the \(\alpha \) axis does not have a large static error and the reconstructed signal \(v_{ar}^* \) joins the real signal \(v_{ar} \) after a reasonable time as depicted in Figure 5(b). The error between \(v_{ar}^* \) and \(v_{ar} \) is canceled after a short time and the same observation is valid for the \(\beta \) axis. From the perspective of proving the robustness of the sequence separation technique, Figure 6(a) shows the simulation results of the \(a\beta \) components of the positive and of the negative sequence. In addition, the positive and negative sequences of the three-phase voltages, which were reconstructed from the detected amplitudes and phase angle are depicted in Figure 6(b).

The results previously analyzed clearly show the satisfactory performance of the technique used for the separation of symmetrical sequences and the grid synchronization of the command. In the following, special attention is paid to the quality of currents and active and reactive powers exchanged with the utility grid. Indeed, faced with the same fault conditions, the results of simulations of the BPSC approach application show that, although the currents injected into the grid remain sinusoidal balanced and in phase with the corresponding voltages, the amplitude of such currents is increased to maintain the average injected active power when the fault occurs (Figure 7(a)). Unfortunately, we note the presence of oscillations of the second harmonic of the active and reactive powers exchanged with the grid \(P_g \) and \(Q_g \). It is important to note that the appearance of these oscillations is expected due to the interaction between the current of the positive sequence and the voltage of the negative sequence in...
Abbassi: SOGI-based Flexible Grid Connection of PV Power Three Phase Converters under Non-ideal Grid Conditions

(16)-(17). This is detrimental to the stability of the power system as shown in Figure 7(b). The examination of Figure 7 and its enlargement of its encircled portions shown in Figure 8 verifies that the currents generated by the SOGI-BA control system are perfectly sinusoidal and balanced even in the presence of the grid fault.

Only a few rapidly amortized and canceled fluctuations can be seen at the moments of appearance and disappearance of the studied fault as depicted in Figure 8(b). Figure 8 depicts the expanded portions of Figure 7. Again, we can see that the SOGI-BA control system achieves the best performance regarding power quality standards in terms of delivered currents and exchanged active and reactive power, because it guarantees the fictive isolation of the GSC from the fault in the grid.

VI. CONCLUSION

In this paper, a control approach based on second-order generalized integrators (SOGIs) and symmetrical sequences theory was proposed to provide effective support of grid-connected voltage source inverters’ operation under non-ideal grid conditions. The proposed control method involves the extraction of the symmetrical sequences of the unbalanced grid voltages using SOGIs, the coordinated control of active and reactive powers and the voltage and current control loops. Simulations developed and programmed in MATLAB environment have proven the performance of the proposed approach in ensuring the service continuity even during asymmetrical grid voltage faults.

ACKNOWLEDGMENT

The author acknowledges the financial support of the Deanship of Scientific Research, University of Hail, Saudi Arabia of this work through the project No. 160978, 2018.

REFERENCES

