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Abstract—The Shrinking Generator (SG) is a popular 

synchronous, lightweight stream cipher that uses minimal 

computing power. However, its strengths and weaknesses have 

not been studied in detail. This paper proposes a statistical testing 

framework to assess attacks on the SG. The framework consists 

of a d-monomial test that is adapted to SG by applying the 
algebraic normal form (ANF) representation of Boolean 

functions, a test that uses the maximal degree monomial test to 

determine whether the ANF follows the proper mixing of bit 

values, and a proposed unique window size (UWS) scheme to test 
the randomness properties of the keystream. The proposed 

framework shows significant weaknesses in the SG output in 

terms of dependence between the controlling linear-feedback 

shift register (LFSR) and non-linearity of the resulting 

keystream. The maximal degree monomial test provides a better 

understanding of the optimal points of SG, demonstrating when 
it is at its best and worst according to the first couple of results. 

This paper uses UWS to illustrate the effect of the LFSR choice 

on possibly distinguishing attacks on the SG. The results confirm 

that the proposed UWS scheme is a viable measure of the 

cryptographic strength of a stream cipher. Due to the importance 

of predictability and effective tools, we used neural network 

models to simulate the input data for the pseudo-random binary 

sequences. Through the calculation of UWS, we obtained solid 
results for the predictions. 

Keywords-stream ciphers; randomness testing; shrinking 

generator; cryptanalysis 

I. INTRODUCTION  

Cryptography is used to transform information from plain 
text to cipher text and vice versa in order to prevent 
unauthorized access to information [1, 2]. This paper focuses 
on symmetric encryption, specifically synchronous stream 
ciphers, of which the shrinking generator (SG) is an example. 
The SG functions use two linear-feedback shift registers 
(LFSRs). LFSRA generates the output bits and LFSRB generates 
the controlling bits. The bit from LFSRA is output as part of the 
keystream whenever the bit from LFSRB is 1, otherwise the 
output is not selected by the cipher. Although some might 
argue that the SG is an old form of cipher technology, it is 
significant as a foundation for other variants of ciphers, such as 
the self-shrinking generator (SSG) [3] and its variations. 
Consequently, the SG is still studied, and its practical 

advantages continue to be appreciated. For example, 
researchers recently examined the SG from a cellular 
automaton point of view [4]. While the study was simplistic in 
its approach, the SG was nonetheless useful. Provided the key 
is unknown, the only method that can attack the SG is an 
exhaustive search. The SG continues to attract interest because 
of its reputation as a standard and a model for enlightening 
cryptanalysis techniques. Lessons learned from the SG can be 
transferred to the cryptanalysis of other cipher techniques. 

II. BACKGROUND 

The SG is a lightweight stream cipher that uses minimal 
computing power [5]. It has been applied in various practical 
settings, such as radio frequency-based identification systems 
(e.g. in Bluetooth protocol) and in Microsoft Word, Excel, etc. 
This study follows the summarized presentation of the SG in 
accordance with [6]. The SG was first introduced in [7]. It is 
composed of two shift registers, namely shift register B (which 
is used as S in their paper), LFSRs and LFSRA. LFSRB is 
designated as a control register that orchestrates what is 
produced by LFSRA. To illustrate this, {��} represents the bits 
produced by LFSRB, {��}  represents the bits produced by 
LFSRA and {��} is the final output produced by the sequence. 
Thus, the final bit sequence will follow this rule: if ��=1, then ��= ��, else if ��=0, then �� is discarded (i.e. the bit is skipped). 
Prior attacks on the SG were studied in [6, 8–10] among others. 
This paper presents the lessons learned in subjecting the SG to 
testing methods that have not been previously applied to it. It 
relays the newly discovered weaknesses of the SG which may 
be used to strengthen its succeeding variations. Lightweight 
encryption is important for small devices with limited 
computation power and is more effective than using the more 
popular Advanced Encryption Standard (AES), which 
consumes more computation power [11]. Thus, the lightweight 
encryption algorithm SG and its security flaws are the focus of 
this study. 

III. USING THE D-MONOMIAL TEST 

As mentioned above, the SG produces a sequence of 
ciphertexts in bits dictated by two LFSR registers. For this 
reason, the SG falls under the category of ciphers defined by 
Boolean functions. These Boolean functions may be examined 
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using their algebraic normal form (ANF). In 2002, the authors 
of [12] introduced a d-monomial test that examines the 
randomness of the ANF of Boolean functions. Many 
researchers have considered this test as the most appropriate for 
examining ANFs. It has been used to detect the bias found in 
gate complexities, which can be represented by Boolean 
functions, and it has been extended to stream ciphers using 
initialisation vectors (IVs) [13]. Further, this test has been 
applied using polynomial description to find monomials of 
degree d, where � = 1,2,… , 
  per polynomial, to find the 
weaknesses in several other stream ciphers not dealt with by 
the SG, such as the ciphers Trivium and Grain [14]. Because 
the SG is a Boolean function that can be expressed in ANF, the 
first hurdle that needs to be cleared by the SG is the d-
monomial test, which we have specifically adapted for our 
purpose of examining the SG. 

A. Our Approach to the d-Monomial Test 

The treatment of this subject in [13] explains the work of 
[12] and their own adoptions of the tests. The fundamental idea 
behind our approach is that each bit of the SG output is viewed 
as a Boolean function of all different key variables (i.e. the 
initial loading of the LFSR). Given a Boolean function ��� ⟶��, and vector � with �� as an element, we have: 

����� = ��⨁����⨁…⨁����⨁�����������, … ,��.  (1) 
This function can be transformed as: 

�∧���� = ∑ ����∏ ��#$��%�#∈�'�    (2) 

where �∧  is a multivariate polynomial representation of �. The 
expression of �∧ is used for convenience in finding the algebraic 
form of � , as this is generally given in a truth table. This 
expression of �∧ is comprised of permutations of monomials in ��. This is also based on the original Boolean function f. The 
subjects of this test are these monomials. The d in this test 
pertains to the number of non-zero bits in the Boolean string. It 
is the Hamming weight (i.e. the length of the longest monomial 
in the ANF). Practically speaking, this test involves counting 

the number of �∧���� = 1 with Hamming weight �. Moreover, 
the keystream length of the SG is ( =	*2+ 	– 	1-�2.���, where / 
is the degree of (0123 , and 4 is the degree of (0125 . This 
length is not a power of 2, so the largest Boolean function we 
can use is obtained by taking the largest power of 2 less than ( 
as the length of the truth table. Thus, we use: 

67#8 =	 9:;<��2+ − 1�.2.��> (3) 
and choose 
 ≤ 67#8  for the Boolean representations of the 
relevant cryptographic bits. 

In general, �����,… , ���  is the Boolean function 
representing the @.A  output bit ��@� of the keystream ���, ��, … � 
of an SG. As the key B = ���, … , ��� ranges over ���, the @.A  
bit of the keystream produces the ANF of the Boolean function ��. We can then use fast Möbius transform to compute it for 
each �  that we choose to represent. As shown in [12], the 
number of weight d monomials that appear in the ANF of a 

random function has an approximately normal distribution, as 
follows:  

CD�� *�E-, ��F*�E-		G (4) 

The author of [12] proposed H�  testing to examine this 
property based on the null hypothesis that the original Boolean 
function �  is not random (i.e. comes from a known 
distribution). In the context of this study, when we describe the 
test as passing, this means we can reject H0. For Example 1, 
LFSRA corresponds to (��+ 	� + 1) and LFSRS to (�L + 	� + 1) 
as characteristic polynomials. We initialized both LFSRs with 
all possible values and then used (3), which yielded keystream 
length 56, which means we had a truth table of length 32. We 
then used Möbius transform to obtain the ANF. Next, we 
examined every monomial weight to calculate how many exist 
per function, and we applied the H� tests. For the algorithm for 
this test and other monomial tests, see [14], in which these tests 
to IV-based ciphers using IV were applied. In our case, we 
used the initial LFSRs’ loading, while authors in [15] 
performed this test on the SSG, which is a variant of the SG. 
However, the test had to be adapted because there are two 
LFSRs in the SG to generate the keystream but only one in the 
SSG. For the monomial distribution test, we needed to count 
the number of monomials across all functions. We performed 
this calculation using the ANF representation of the functions. 
For a particular monomial (say x1x3), we counted how many 
functions contain that monomial. Finally, we compared the 
monomial count with the expected monomial distribution [14]. 
In short, the difference between the two tests is that in the �-
monomial test, we counted the number of monomials with a 
certain weight for each function. 

B. Our Experiments for the d-Monomial Test 

To perform this test, we set up all combinations of pairs of 
primitive LFSRs with relatively prime lengths and applied three 
different scenarios: 

• We initialized both LFSRs with all possible random values. 

• We fixed the control LFSRB with chosen values and varied 
LFSRA with all possible random values. 

• We fixed the input LFSRA with chosen values and varied 
LFSRB with all possible random values. 

For each LFSR combination, in each scenario, we created a 
truth table of the maximal length possible given the applicable 
keyspace and the limitation form from (3). We performed 
exhaustive computations for all admissible pairs of primitive 
LFSRs, and we tested the SG outputs corresponding to LFSRs 
of combined length up to n=19. As Tables II and III show, 
certain bit functions failed the randomness test at 0.01 and 0.05 
levels of significance, therefore they have an ANF that is far 
from that expected of a random function. Note that for LFSRs 
of combined length 16–19, we took half of the maximum 
keystream length possible and therefore half as many ��O 
because of memory constraints in the computations. The 

examples in Tables II and III illustrate the �-monomial test. For 
the results of this test for SG degrees 7–15 with full keystream 
output applying (3), we used the SSG results from [15] for 
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comparison (see Table I, last column). For degrees 16–19, we 
used half of the keystream outputs and applied (3) (see Table 
II). By applying the monomial distribution test to the first 
example, we found that the keystream fails in 16 out of 24 pairs 
for SG with degree 7, therefore the passing percentage is 
approximately 33.33%. More extensive results are reported 
later in this paper for higher degrees. 

TABLE I.  D-MONOMIAL TEST FOR SG DEGREES 7–15, WITH FULL 
KEYSTREAM OUTPUT USING H� TEST, DISPLAYED WITH SSG 

RESULTS FROM [15] FOR COMPARISON 

SG 

degree 

Number 

of LFSRS 
pairs 

Number 

of fi 

Fails at 

α=0.01 

Total 

passes 

Passing 

percentage 

SSG 

passing 

percentage 

7 24 768 251 505 67310% 98.6% 

8 72 4608 1561 2255 66124% 
 

9 72 9216 3121 4329 66135% 
 

10 216 55296 27847 27359 49640% 
 

11 624 319488 55203 198895 82721% 
 

12 648 663552 339627 206071 48817% 99.8% 

13 2520 5160960 2831437 2083684 45137% 
 

14 3840 15728640 7938000 6542587 49531% 99.9% 

15 3840 31457280 18213724 13183968 42100% 
 

TABLE II.  D-MONOMIAL TEST FOR SG DEGREES 16–19, WITH HALF 
OF KEYSTREAM OUTPUT USING H� TEST 

SG 

degree 

Number of 

LFSRS pairs 

Number 

of fifififi Fails at 

α=0.01 

Passing 

percentage 

16 50 409600 198895 51441% 

17 50 819200 510001 37744% 

18 50 1638400 932719 43071% 

19 50 1114112 655568 41158% 

TABLE III.  EXHAUSTIVE TESTING RESULTS FOR MAXIMAL 

MONOMIAL TEST FOR COMBINED LFSR LENGTHS 7-9 

LFSRA LFSRB 

Observed 

with fixed 

LFSRB 

Observed 

with fixed 

LFSRA 

Number 

of 

functions �� + �� + 1 �L + �� + 1 0 12 32 

�L + �� + 1 �� + �� + 1 0 14 32 

�L + �� + 1 �� + �	 + 1 0 14 32 

�L + �	 + 1 �� + �� + 1 0 16 32 

�L + �� + 1 �R + �� + 1 0 66 128 �L + �� + 1 �R + �� + 1 0 66 128 

�R + �� + 1 �L + �	 + 1 0 70 128 

�R + �� + 1 �L + �� + 1 0 68 128 

 

C. Maximal Degree Monomial Test 

The maximal degree monomial is the monomial where all 
variables are factors in the term. Thus, when taking a binomial 
function’s ANF for variables ��, ��, �� , the maximal degree 
monomial will be the term �S������ (�S is the coefficient of 
the term with maximum weight). This monomial may not be 
present in an arbitrary ANF. It is unlikely to exist if lower 
degree monomials do not exist, but its existence is an 
indication of how the ANF follows proper mixing of bit values. 
It is therefore worth testing. Here, we followed [14], which 
demonstrated that the maximal degree monomial may be 
detected using the Reed-Muller transform by conducting an 
XOR of all entries in the truth table. The existence of this 
monomial may be checked by XORing the first keystream bit 
from the initialisation. We then determined whether this exists 

in the output of the cipher. See [14] for a full description of this 
test. The results are presented in Table III and discussed below. 

D. Discussion of d-Monomial and Maximal Degree Monomial 

Tests 

For the higher degrees of 16–19, we chose 50 LFSR pairs 

and used the first half of the keystream output *2+	– 	1-�2.��� 
bits to derive the maximal Boolean function possible, which 
was then subjected to the �-monomial test. This was done for 
computational efficiency. Table I shows that varying 
percentages of keystream bits ��, from 18–58%, failed the �-
monomial test at significance level α=0.01. We also carried out 
a limited d-monomial test on the SSG for comparison (Table I). 
This exhaustive testing provided further evidence that the SG is 
much weaker than the SSG. Although the data in Table II are 
not exhaustive, they show that the same kind of failure rates 
continued for the d-monomial test applied to 16–19 SG degrees 
at T=0.01 significance level. We performed a maximal degree 
monomial test for SG degrees 7–15 and presented a chosen 
sample for LFSR pairs of degrees 7–9. The maximal degree 
monomial occurred roughly between 37% (12 of 32, indicated 
by dividing the number in Column 4 with Column 5) to 54.6% 
(70 of 128). We observed that if LFSRs (the controlling LFSR) 
is fixed, the output is linear, and thus no monomial of degree 
≥1 appears, which directly rules out the maximal degree 
monomial. In summary, it is ideal for an SG to have a high 
degree of monomials because this makes more difficult to 
guess the Boolean function behind it. However, as shown in 
Table I, the percentage of passing samples decreases with 
higher degrees, meaning that the failure to be random becomes 
high. Conversely, we can keep the degree of the monomials 
low, which the data show to have a high pass rate, however this 
has the disadvantage of being computationally easy to break. 

IV. TESTING FOR THE UNIQUE WINDOW SIZE 

The unique window size (UWS) of a keystream is the 
minimal length w where every observed window of length w in 
the keystream is unique. An m-sequence (pseudorandom binary 
sequence) of period 2n-1 is generated by an LFSR of length n. 

Thus, � = *��0�, … ,��U − 1�- ∈ ���  is an arbitrary U -tuple 

over ���, where 1 ≤ U ≤ 
 Then we used the function: 
6��� = V2��W 								@�		� ≠ �0,0,… ,0�	

2��W − 1																						Y:�Y		 				 (5) 
where 6��� denotes the number of times the k-tuple a appears 
as a ‘window’ *��@�, ��@ + 1�,… . ��@ + U − 1�-  of the m-

sequence *��4�-.Z�. Therefore, it is a count of repetitions of the 

tuple that appear in the keystream. 

For an LFSR, the UWS is trivially n+1 where 
  is the 
length of the LFSR. Further, if we let the LFSRs in the SG be 

run for a full period, that is, for *2+	– 	1-�2.��� output bits, this 
corresponded to about twice as many clock cycles, namely �2+ − 1��2. − 1�  cycles, since /  and 4  were chosen to be 
relatively prime. This means that the state space is the product 
of the two state spaces. In the following example, we 
investigated the UWS distribution for the SG. For Example 2, 
LFSRA was �� + � + 1 and LFSRB was �L + � + 1 with initial 
states of 001 and 0001, respectively. The LFSRA output was 
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0011101 and the LFSRB output was 000111101011001. 
Therefore, the SG output (keystream) was 
11010110101011000100101110011101001100010111101011
100111. Next we found the UWS, which in this case was 11. 
We examined the UWS for a certain degree (i.e. the total length 
of the two LFSRs) for SG. For example, for degree 8, we could 
see that the UWS was not well-distributed. There was a large 
variation in size (Table IV). Table VI shows the UWS 
computations for the different LFSRs combinations for SG 
with degree 8. 

TABLE IV.  UWS COUNT FOR SG KEYSTREAM OF DEGREE 8 WHERE 

THE AVERAGE OF UWS IS 13.25 

UWS 11 12 13 14 15 16 

Count 4 6 4 2 6 2 

 

A. UWS Tests: Results, Statistical Tests and Observations 

We performed exhaustive testing of the UWS distribution 
for the SG keystream using Algorithm 1: 

Algorithm 1 UWS Algorithm 
Given a periodic bit sequence B[i] with period P, the UWS 

algorithm calculates the UWS. 

Given: B = Periodic bit sequence, P = Period of B. 

Calculate: L = Minimum subsequence length such that all 
L-bit subsequences are unique. 

Initialize L with 1. 

REPEAT 
for each bit index, i of B do 

Test 

for each bit index, j of B greater than i do 

if L-bit subsequence of B starting at i = L-bit 
subsequence of B starting at j then 
INCREMENT L 

CONTINUE the next REPEAT loop 

end if 
end for 

end for 

UNTIL all L-bit subsequence of B are unique. 
Return L 

Authors in [15] introduced general observations, whereas 
we conducted deeper analysis with more tests and 
investigations to produce a greater understanding of the SG’s 
weaknesses based on tests and predictions applied on the UWS. 
Figure 1 shows the UWS, also called the minimal window size, 
for degree 20 of the SG. We ran the computations for 70,416 
LFSRS pairs. As shown in Figure 1, the UWS is concentrated 
between 37 and 41. This means that it is highly likely to be 
concentrated below approximately 2n, where n is the combined 
degree of the SG, indicating that a distinguishing attack on SG 
may be feasible. As shown in [16], UWS is a very good 
indicator of the randomness of a keystream. This relationship is 
discussed below. To explain the maximum order complexity of 
a given sequence 1, it is necessary to find the possible shortest 
FSR that can produce 1. This concept was introduced in [17] in 
1990. Thus, for 1, the maximum order complexity is equal to 
1+l, where : represents the longest s ⊂ S length that can be 
found twice within S, and that is our UWS. The authors of [17] 

found an approximation of maximum order complexity 
distribution of a chosen pseudorandom binary sequence. More 
importantly for our purposes, the UWS dependence on the 
choice of polynomials is an indicator that there might be a 
possible distinguishing attack based on this variability. Of 
course, the LFSR polynomials are public knowledge, by 
Kerchoff’s principle, and this can be used as a guide in 
choosing good polynomials from the vast number of choices 

φ
������

�  for degree 
. If the SG user broke Kerchoff’s principles 
and kept the polynomials secret, as is sometimes ill-advisedly 
suggested, the investigation of the UWS would enable an 
attacker to mount an attack more efficient than the brute force 
attack on the polynomials. Recall that when the polynomials 
are kept secret, their degree sequences can be considered a part 
of the key, squaring the search space for brute force attacks. 
The UWS enables one to search a much more limited set of 
polynomials. See Table V for UWS distribution in the SG 
keystreams of degree 15. 

 

 
Fig. 1.  UWS distribution for degree 20 

B. Statistical Distribution and Prediction Modeling 

Using Easyfit and R software, we confirmed that the UWS 
of degree 20 (UWS20) was skewed (see Figure 1). In fact, it 
approximately follows a lognormal distribution, as presented in 
Figure 2. The distribution function of lognormal distribution is 
given by: 

C�ln �; _, `� � abcd��ef ghi�''j' k
l√�n   (6) 

Given that the SG keystream’s UWS exhibits an 
approximate lognormal distribution, we can follow standard 
confidence interval information, such as the 68-95-99.7 rule, in 
determining the range of probable UWS values in the 
keystream by taking the log of UWS. Using the Bartel rank 
test, Cox Stuart test, rank test and runs test, we found that the 
sequence of data (UWS20) is a non-random sequence 
(p<0.001). This indicates that this sequence of data could be 
predicted using statistical models. We then used several 
methods to learn about the pattern and predict the sequence, 



Engineering, Technology & Applied Science Research Vol. 10, No. 2, 2020, 5132-5141 5136 
 

www.etasr.com Alamer & Soh: Design and Implementation of a Statistical Testing Framework for a Lightweight … 

 

namely: 1. Generating a theoretical lognormal sequence from 
the mean and standard deviation of observed data of the same 
length and comparing the accuracy of prediction, 2. Using a 
linear regression method to predict and check the accuracy of 
the predicted sequence, and 3. Using a non-linear (non-
parametric regression) method to predict and check the 
accuracy of the predicted sequence (including validation and 
calibration).  

 

 
Fig. 2.  Comparison of CDFs of observed and theoretical distributions, 

UWS20 

TABLE V.  UWS COUNT FOR SG KEYSTREAM OF DEGREE 15 

UWS Count UWS Count 

24 4 34 48 

25 52 35 32 

26 112 36 12 

27 166 37 20 

28 232 38 4 

29 168 39 6 

30 146 40 4 

31 116 42 10 

32 92 45 2 

33 54   

 

1) Method 1 

Here, we used R software to generate an equal number of 
observations (70,416) from lognormal distribution using the 
mean and standard deviation of observed UWS20. We then 
differentiated between observed UWS20 and simulated 
UWS20 and compared the accuracy (the difference between 
the observed and simulated predicted UWS20 being 0). The 
accuracy was 7.8%, which was expected, as UWS20 was found 
to be non-random. Hence, a random sequence may not entirely 
predict the sequence. 

2) Method 2 

We used the linear regression model, where the outcome 
was UWS20 and the explanatory variables were input degree, 
input weight, control degree, control weight, input polynomial, 
and control polynomial. Each input and control polynomial 
variables had polynomials of up to 17 degrees and hence 
produced 17 separate binary variables based on the possible 
terms in a primitive polynomial of degree 17 (for an SG with 

degree 20, the highest LFSR degree is 17 and the lowest is 3 
for a primitive polynomials combination). 

Step 1 of Method 2 was to extract 34 variables from the 
input and control polynomials and add them to four other 
independent variables to form a pool of independent variables. 

In Step 2, we ran a simple linear regression model on each 
of suitable candidates for the multi-variable linear regression 
model. The input degree was found to be the strongest 
predictor because it had the highest R-square value and 
accuracy rate. Interestingly, it was highly correlated with the 
control degree and, as such, the two cannot be put together in 
the same model. This means that control degree and input 
degree as variables are correlated, or input degree =�(control 
degree), so just one of them is necessary. 

TABLE VI.  UWS COMPUTATIONS FOR DEGREE 8 WITH LFRPS PAIRS 

Input LFSRA Control LFSRB UWS 

�� K � K 1 �R K �� K 1 13 

�� K � K 1 �R K �� K 1 15 

�� K � K 1 �R K �� K �� K � K 1 11 

�� K � K 1 �R K �L K �� K � K 1 14 

�� K � K 1 �R K �L K �� K � K 1 12 

�� K � K 1 �R K �L K �� K �� K 1 15 

�� K �� K 1 �R K �� K 1 15 

�� K �� K 1 �R K �� K 1 13 

�� K �� K 1 �R K �� K �� K � K 1 15 

�� K �� K 1 �R K �L K �� K � K 1 12 

�� K �� K 1 �R K �L K �� K � K 1 14 

�� K �� K 1 �R K �L K �� K �� K 1 11 

�R K �� K 1 �� K � K 1 16 

�R K �� K 1 �� K �� K 1 12 

�R K �� K 1 �� K � K 1 12 

�R K �� K 1 �� K �� K 1 16 

�R K �� K �� K � K 1 �� K � K 1 15 

�R K �� K �� K � K 1 �� K �� K 1 13 

�R K �L K �� K � K 1 �� K � K 1 12 

�R K �L K �� K � K 1 �� K �� K 1 11 

�R K �L K �� K � K 1 �� K � K 1 11 

�R K �L K �� K � K 1 �� K �� K 1 12 

�R K �L K �� K �� K 1 �� K � K 1 13 

�R K �L K �� K �� K 1 �� K �� K 1 15 

 

In Step 3, we calculated and analyzed the multicollinearity 
among the univariable significant variables to determine which 
variables had to be discarded from the multi-variable regression 
model. Multicollinearity is defined here as high correlation 
among explanatory variables, which can be assessed from a 
matrix of correlation coefficients of the explanatory variables 
along with p values. We discarded the control degree, input 
polynomial of degree 14 and control polynomial of degree 17 
from the model due to multicollinearity with other covariates. 
We also checked first order interaction.  

In Step 4, a backward stepwise multi-variable regression 
model was run with the suitable variables for the prediction of 
UWS20. We could then retain 24 variables (in the model), 
which were used in our final predictive model. 

Predicted:log(UWS20)=3.9541011-InputDegree*0.0121524+ 

InputWeight*0.0005625-ControlWeight*0.1042675 - input1 * 
0.0023569 + input11 * 0.0051394 -input12 * 0.0057957 - 
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 input13 * 0.0122590 - input17 *0.0106996 + control1 * 
0.1060109 + control2 * 0.1035639 +control3 * 0.1034507 + 
control4 * 0.1062923 + control5 *0.1051447 + control6 * 
0.1061192 + control7 * 0.1001495 +control8 * 0.1053034 + 
control9 * 0.1104407 + control10 *0.1036258 + control11 * 
0.1058865 + control12 *0.0999843 + control13 * 0.0953821 + 
control14 * 0.1055764 + control15 * 0.1042613 + control16 * 
0.1049406 

Input 17 refers to the term of power 17 in the input LFSR 
and similarly in control 17 (the number indicates the power of 
term in the given polynomial). Using the above model, UWS20 
can be predicted by inserting the values of the variables in the 
model. A numerical value must be inserted for numerical 
variables, with 0 = absence and 1 = presence. This model can 
be used as a selection tool for the LFSRs pairs by choosing two 
primitive polynomials and inserting their parameters in the 
model to see if the UWS is high enough for the chosen pairs. 

In Step 5, bootstrap validated bias was used to correct the 
adjusted R-square and assess the discrimination. Calibration 
graphs were produced to assess the calibration of the model. 
These were done using the rms package in R. Afterwards, we 
measured the accuracy with respect to the difference of 
observed and predicted UWS20. Sensitivity analysis was 
performed to ensure that the effect of a relatively smaller 
sample size on prediction capabilities was not detrimental. 
Hence, we randomly selected 50%, 25%, and 10% of the data 
and performed the above calculations again to check the 
accuracy and performance of the prediction model. 

In Method 2, the accuracy was approximately 12.1%. 
However, the accuracy increased from 12.1% to 37.8%, 61.8%, 
78.6%, and 87.1% if we allowed the prediction to be within 1 
(e.g. observed UWS20 was 40, prediction is 39), 2, 3, and 4 
degrees of tolerance with observed UWS20 respectively. 
Although the bootstrap validated adjusted R-square (0.262) 
indicated a weak to moderate prediction performance, the 
calibration graph showed good calibration between the 
observed and predicted UWS20 (see Figure 3). 

3) Method 3  

Using R software (e.g. np package), we implemented non-
parametric regression analysis with the same modeling 
structure as the multi-variable linear regression model but 
without any assumptions about the inherent distribution of the 
observed UWS20. Unfortunately, Method 3 failed to produce 
better accuracy than the parametric multi-variable linear 
regression model. Thus, we used the multi-variable linear 
regression model as the final model because it was more 
powerful than nonparametric regression. 

C. Implications of the UWS  

When coupled with statistical techniques, the UWS can be 
used as a method of sampling to help better comprehend the 
behavior of a cipher under testing. As discussed, we used 
regression tools as a support for detecting cipher properties. 
Thus, sophisticated pattern recognition methods may be used 
for improved prediction. Lastly, we considered the given 
sequence s and what the linear complexity (LC) of an LFSR 
produces upon it. Thus, we analyzed s against UWS. Both LC 

and UWS must be higher for good security. Thus, like LC, 
UWS can be used as a measure of security strength.  

V. PROPOSED NEURAL NETWORK PREDICTION MODEL 

Neural Networks (NNs) have many everyday applications, 
but they are principally focused on simulating the ability of 
neurons in the human brain to process information and data. 
The human brain consists of nerve cells and neurotransmitters 
to handle orders and inputs, and a NN follows this structure, 
processing information and learning from it to predict the 
outcomes based on inputs (data). An NN functions by 
employing a flexible algorithm that learns from the available 
data and produces expectations in response to them [18]. NNs 
have many applications, including climate forecasting [19], 
stock market prediction [20], music production [21], or even 
cancer prediction [22]. They may also be applied in the fields 
of confidentiality and security of information, such as in the 
selection of keys used for encryption or in pattern recognition 
[23]. It is important to note that deep NN modeling is still a 
valid method and is evolving to be used in new areas, as shown 
in [24] which is an interesting study demonstrating the 
effectiveness of an NN-based model for investigating a 
complex system. 

 
Fig. 3.  Calibration graph for predicting UWS of degree 20 SG 

A. Neural Networks and Security 

Using the NN model provided by authors in [30] in 1976, it 
was possible to emulate the method of exchanging secret keys 
as a means of communicating through an insecure network. 
Especially in cases where a large number of keys are required, 
the application of NN models allows the study of the most 
secure ways to handle the exchange of keys using an unsafe 
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communication channel [25]. NNs have also been implemented 
to produce a secret key on a public network [26]. It is important 
to select a design and the appropriate weights for the NN to test 
and choose the best encryption system and to ensure that the 
messages are encrypted correctly [27]. To follow up the applied 
studies of NN models in terms of design and testing of 
encryption systems as well as measuring their effectiveness and 
potential problems, see [28]. Because there are limited studies 
on the use of NN models to test the randomization of the binary 
sequence required for use in an effective cryptosystem, it is 
important to study the NN as a measurement tool. Therefore, 
an extra step must be added in the implementation of the NN to 
enhance the desired cryptosystem. 

B. Neural Network Model Implementations 

Given that the pseudorandom binary sequence plays an 
important role in encryption, the selection of the best binary 
sequence should be as random as possible to produce a 
powerful cipher (algorithm) that will generate an attack-
resistant sequence. Therefore, in this study we employed NN 
models to measure the prediction based on UWS to ascertain 
whether they are able to predict UWS. The study succeeded, 
and the results were very promising, enabling us to measure the 
strength of the pseudorandom binary sequence, which is 
predicated on the strength of the algorithm (cipher) produced 
by it. These results may be applied to other algorithms, thus 
contributing to the analysis and selection of the best encryption 
systems. We calculated UWS using EC2 for SG and SSG to 
obtain data for a large number of these algorithms at different 
degrees (SG and SSG). We sought to verify the validity of the 
application of NN at the different SG and SSG degrees along 
with the accuracy of our expectations. To confirm the 
effectiveness of the models, a high prediction rate exceeding 
97% for some degrees and of no less than 90% for the others 
with negligible mean square errors (MSEs) is expected. Tables 
VII–IX detail the anticipated results. From this, we conclude 
that the NN is a more effective tool for prediction than the 
other statistical methods previously introduced in this study. 
The MSE is a good indicator of the validity of the method used 
[29] which protects the messages and shows the accuracy of 
the results by measuring MSE. 

C. NN Models and Results for SG 

Table VII shows that UWS20 comprises three layers with 
ten, five and two nodes each, exhibiting a learning rate of 0.001 
and an MSE of 0.0088, which is very low and indicates the 
effectiveness of the model when applied to UWS prediction. 
There were 6,791 overall training parameters. 56,333 were 
used as exercise data, representing 80% of the total data. The 
remaining 20% were used for testing and validating. The 
effectiveness of the forecast pertains to 94.30% of the total 
data. By way of another example relating to UWS24, we found 
the effectiveness of the prediction to be 95.42% and the 
learning rate to be 0.0001 with an MSE of 0.0019 and the same 
number of training parameters. The training dataset was 
192,750. 

D. Comparison with Self-Shrinking Generator 

We found that with a range from UWS4 to UWS20 in a 
single model, the number of layers was four with 100, 50, 20, 

and 10 nodes on each layer, exhibiting a learning rate of 0.0001 
with an MSE of 0.0012. The training set consisted of 58,232 
samples, the validation set of 14,558, total training parameters 
were 6,591 and the prediction rate was 96.05% (Table VIII). 
For UWS24, we located the same number of layers, nodes and 
training parameters and the same learning rate with an MSE of 
0.0098, with training set equal to 22,1184, with validation set 
equal to 55,296, and with a prediction rate of 97.01% 
confirming the efficiency of the models for SG and SSG 
(Tables VII–IX). 

TABLE VII.  SG MODEL RESULTS FOR THE NEW NN MODELS 

INCLUDING RESULTS FOR DEGREES 20, 21, 23, AND 24 

 
UWS20 

model 

UWS21 

model 

UWS23 

model 

UWS24 

model 

Layers 3 4 4 4 

Number of nodes 10, 5, 2 50, 20, 10, 5 50, 20, 10, 5 50, 20, 10, 5 

Learning rate 0.0001 0.0010 0.0001 0.0001 

MSE 0.0088 0.0138 0.0033 0.0019 

Training set 56333 196502 713395 770997 

Validation 

sample 
14084 49126 178349 192750 

Total parameters 6791 6791 6791 6791 

Prediction 

percentage 
96.01 94.07 95.39 95.42 

TABLE VIII.  SSG MODEL RESULTS FOR THE NEW NN MODELS 
INCLUDING RESULTS FOR DEGREES 4–20, 21 AND 22 

 UWS Degrees 4-20 UWS21 model UWS22 model 

Layers 4 4 4 

Number of nodes 100, 50, 20,10 100, 50, 20,10 100, 50, 20,10 

Learning rate 0.0001 0.0001 0.0001 

MSE 0.0012 0.0014 0.0160 

Training set 58232 67737 96025 

Validation sample 14558 16935 24007 

Total parameters 6591 6591 6591 

Prediction percentage 96.05 96.66 89.61 

 

E. The Difference between SG and SSG  

SSG is another type of cipher derived from SG. However, 
in SSG, the process of selection and input is conducted using a 
single primitive polynomial working as an LFSR. In general, 
this has been found to be more effective in the field of 
confidentiality. Using the same principles as SG, the SSG 
keystream was used to calculate UWS. When applying the NN 
model, the dependent variable was UWS, as it was in SG, and 
the independent variables were the SSG polynomial degree and 
the polynomial weight. The results of this prediction can be 
seen in Tables VIII and IX. 

F. NN Model Design 

We used a sequential model to define the model layer by 
layer, and we used a rectified linear unit (ReLu) for an 
activation function. Our model had four hidden layers, with 
100, 50, 10, and 5 nodes and the output layer had 1 node. The 
loss function was defined as the MSE, and the learning rate was 
0.0001. The optimization technique was regulated by the 
‘Adagrad’ optimizer, and the data were fitted to train the 
model. Most of the data refer to SG with UWS20 under slight 
modifications. 
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1) Cost Function 

To ascertain whether the model was learning as required, 
we needed to calculate the MSE, which needed to be small to 
demonstrate that the prediction was close to the actual output 
data. The smaller the MSE, the better the model and the more 
accurate the prediction. The mathematical equation for the 
MSE is: 

�
�∑ o�� − ��

^ q��   (7) 

where n is the number of data inputs (simulations), ��  is the 
observed data and ��

^
 is the predicted data. 

TABLE IX.  SSG MODEL RESULTS FOR THE NEW NN MODELS 

INCLUDING RESULTS FOR DEGREES 23, 24, AND 25 

 UWS23 model UWS24 model UWS25 model 

Layers 4 4 4 

Number of nodes 100, 50, 20, 10 100, 50, 20, 10 100, 50, 20, 10 

Learning rate 0.0001 0.0001 0.0001 

MSE 0.0046 0.0098 0.0052 

Training set 285568 221184 1036800 

Validation sample 71392 55296 259200 

Total parameters 6591 6591 6591 

Prediction percentage 90.14 97.01 97.14 
 

2) The Rectified Linear Unit Activation Function 

This function is nonlinear and has become popular for use 
in deep learning. Since the data we entered were positive and 
nonlinear, we achieved the best results using the ReLu 
activation function. Its advantage is that it is a fast learner and 
thus reduces the cost of use. We used ReLu in the inner layers 
of our models with the following formula: 

��� � max��, 0� (8) 

Here, the learning rate must be adjusted to reduce the MSE 
as much as possible. We found a learning rate of 0.0001 to be 
the optimal setting (see Tables VII–IX). The importance of NN 
for our study lies in its ability to accurately predict UWS, 
which makes it an optimal instrument for measuring 
randomness in a given binary sequence, which is important in 
applying effective and safe encryption. This study and its 
application of NN models paves the way for future applications 
to measure the validity of the cryptosystems used, evaluate 
their effectiveness and further develop them. We found that by 
comparing NN models to study the behavior of the randomized 
binary sequence, more effective and more efficient predictions 
could be made than those of the model in the previous section, 
which used multivariable linear regression (a non-NN-based 
model). Further, the extent and efficiency of the predictions 
remained high, even though SSG appeared to be more random 
than SG. This can be seen in the results of the prediction in 
Tables VII–IX, which confirm that NN-based models are 
effective even in cases of random and discrete data, as in our 
case. 

VI. OUR FINDINGS 

This paper analyzed new weaknesses in the SG, a popular 
synchronous stream cipher. The first test was the d-monomial 
test adapted to SG (applied to the ANF representation of 

Boolean functions), which showed significant weaknesses in 
the SG output. We also investigated the dependence between 
the controlling LFSR and the non-linearity of the resulting 
keystream. After this, we performed a side test, called the 
maximal degree monomial test, which is related to the d-
monomial test. In the result analysis, we reported a better 
understanding of the optimal points of the SG, showing when it 
was at its best and worst. Finally, we analyzed the cipher 
technique using the UWS and demonstrated dependencies 
between the UWS and the two LFSR polynomials. The results 
were assisted by statistical techniques provided by the UWS. 
Using the UWS, we showed the effect of the LFSR choice on 
possible distinguishing attacks on the SG. The results 
confirmed that the UWS is a viable measure of cryptographic 
strength. Lastly, the statistical model for the UWS model can 
be used to test the SG pairs, which can help to measure their 
strength based on their UWS so the user can choose the pairs 
with a higher UWS. The � -monomial test showed that the 
controlling LFSR causes more non-linearity if it has a higher 
degree than the input LFSR. Conversely, using the UWS test 
and modeling, we found that the input LFSR helps the 
prediction, which confirms that controlling LFSR with higher 
degree than input LFSR makes better choices. Additionally, the 
most effective elements (in decreasing order) in the model to 
help the prediction are presented in Table X. 

TABLE X.  MOST EFFECTIVE ELEMENTS IN THE PREDICTION MODEL 

FOR UWS20 

Variable R square 

Input polynomial term of order 17 0.18 

Input degree 0.127 

Control degree 0.127 

Control weight 0.10 

Input weight 0.09 

Input polynomial term of order 12 0.09 

Input polynomial term of order 13 0.08 

Input polynomial term of order 14 0.08 

Input polynomial term of order 15 0.08 

Input polynomial term of order 16 0.08 
 

As another measure of validity analysis, we modeled 
UWS17, UWS18 and UWS19 and found similar prediction 
performance (adjusted R-square) and accuracy. By using 50%, 
we modeled the data with similar accuracy with an R-square of 
approximately 26.6%. This means that we can model with less 
data, which reduces computational complexity. To ensure that 
every state was unique, we applied the UWS to find the 
minimal length of the SG keystream. Doing so, we found that 
identifying the UWS can lead to discovering the LFSR pairs’ 
weakness, which, in forming the keystream, can in turn lead us 
to understand which LFSR pairs should be avoided. Our 
research also showed that by using statistical tools along with 
UWS, we can experimentally predict the SG’s behavior. This 
again illustrates the possible weaknesses in the SG keystream 
against attacks that may use this measure. Finally, we found the 
possibility of using NN models to predict UWS with better 
effectiveness and promising results compared with the non 
NN-based models. NN models are an effective measuring 
instrument for non-LC tests and should be adopted in the field 
of cryptanalysis more often. 
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VII. CONCLUSIONS 

The goal of this research was conducting exhaustive 
experimental testing of some cryptographic security measures 
applied to the SG. By running complex computations for 
different SG degrees, it was found that the SG keystream 
output failed the d-monomial test. Thus, it is possible to 
establish distinguishing attacks on this kind of stream cipher. 
This test can be applied to other ciphers in different ways, 
depending on whether it is an IV-based or IV-less cipher. 
Additionally, the controlling LFSR had a greater effect than the 
input LFSR on the ANF non-linearity. This was confirmed by 
applying the d-monomial test. UWS test results can identify the 
LFSR pairs’ weakness. A weakness can result in vulnerability 
to attacks, thus the cipher user must pay attention to the LFSR 
pairs selection.  

We found that a model of the NN predictor offered highly 
precise results that contribute to its efficacy as a tool for 
measuring the extent of pseudorandom binary sequences and, 
thereby, the strength of the produced encryption systems. The 
results show that care must be taken when using the SG as a 
cryptographic technique. First, with a clearer understanding of 
the SG, analysts can design new attack techniques to mount on 
the SG. Second, the UWS can be used to analyze any 
keystream generated by any cipher. We intend to examine the 
UWS on selected ciphers in the future. We also plan to dig 
deeper into the mathematical relationship of the UWS and LC 
for specific ciphers. Finally, we found that applying the models 
by implementing the NN gave us superior results compared 
with a multi-nonlinear regression model (non-NN-based 
model). 
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