
Engineering, Technology & Applied Science Research Vol. 10, No. 2, 2020, 5132-5141 5132

www.etasr.com Alamer & Soh: Design and Implementation of a Statistical Testing Framework for a Lightweight …

Design and Implementation of a Statistical Testing

Framework for a Lightweight Stream Cipher

Ahmed Alamer

Department of Computer Science and Information
Technology, School of Engineering and Mathematical
Sciences, La Trobe University, Victoria, Australia and

Department of Mathematics, Tabuk University, Saudi Arabia
a.alamer@latrobe.edu.au

Ben Soh

Department of Computer Science and Information
Technology, School of Engineering and Mathematical
Sciences, La Trobe University, Victoria, Australia

b.soh@latrobe.edu.au

Abstract—The Shrinking Generator (SG) is a popular

synchronous, lightweight stream cipher that uses minimal

computing power. However, its strengths and weaknesses have

not been studied in detail. This paper proposes a statistical testing

framework to assess attacks on the SG. The framework consists

of a d-monomial test that is adapted to SG by applying the
algebraic normal form (ANF) representation of Boolean

functions, a test that uses the maximal degree monomial test to

determine whether the ANF follows the proper mixing of bit

values, and a proposed unique window size (UWS) scheme to test
the randomness properties of the keystream. The proposed

framework shows significant weaknesses in the SG output in

terms of dependence between the controlling linear-feedback

shift register (LFSR) and non-linearity of the resulting

keystream. The maximal degree monomial test provides a better

understanding of the optimal points of SG, demonstrating when
it is at its best and worst according to the first couple of results.

This paper uses UWS to illustrate the effect of the LFSR choice

on possibly distinguishing attacks on the SG. The results confirm

that the proposed UWS scheme is a viable measure of the

cryptographic strength of a stream cipher. Due to the importance

of predictability and effective tools, we used neural network

models to simulate the input data for the pseudo-random binary

sequences. Through the calculation of UWS, we obtained solid
results for the predictions.

Keywords-stream ciphers; randomness testing; shrinking

generator; cryptanalysis

I. INTRODUCTION

Cryptography is used to transform information from plain
text to cipher text and vice versa in order to prevent
unauthorized access to information [1, 2]. This paper focuses
on symmetric encryption, specifically synchronous stream
ciphers, of which the shrinking generator (SG) is an example.
The SG functions use two linear-feedback shift registers
(LFSRs). LFSRA generates the output bits and LFSRB generates
the controlling bits. The bit from LFSRA is output as part of the
keystream whenever the bit from LFSRB is 1, otherwise the
output is not selected by the cipher. Although some might
argue that the SG is an old form of cipher technology, it is
significant as a foundation for other variants of ciphers, such as
the self-shrinking generator (SSG) [3] and its variations.
Consequently, the SG is still studied, and its practical

advantages continue to be appreciated. For example,
researchers recently examined the SG from a cellular
automaton point of view [4]. While the study was simplistic in
its approach, the SG was nonetheless useful. Provided the key
is unknown, the only method that can attack the SG is an
exhaustive search. The SG continues to attract interest because
of its reputation as a standard and a model for enlightening
cryptanalysis techniques. Lessons learned from the SG can be
transferred to the cryptanalysis of other cipher techniques.

II. BACKGROUND

The SG is a lightweight stream cipher that uses minimal
computing power [5]. It has been applied in various practical
settings, such as radio frequency-based identification systems
(e.g. in Bluetooth protocol) and in Microsoft Word, Excel, etc.
This study follows the summarized presentation of the SG in
accordance with [6]. The SG was first introduced in [7]. It is
composed of two shift registers, namely shift register B (which
is used as S in their paper), LFSRs and LFSRA. LFSRB is
designated as a control register that orchestrates what is
produced by LFSRA. To illustrate this, {��} represents the bits
produced by LFSRB, {��} represents the bits produced by
LFSRA and {��} is the final output produced by the sequence.
Thus, the final bit sequence will follow this rule: if ��=1, then ��= ��, else if ��=0, then �� is discarded (i.e. the bit is skipped).
Prior attacks on the SG were studied in [6, 8–10] among others.
This paper presents the lessons learned in subjecting the SG to
testing methods that have not been previously applied to it. It
relays the newly discovered weaknesses of the SG which may
be used to strengthen its succeeding variations. Lightweight
encryption is important for small devices with limited
computation power and is more effective than using the more
popular Advanced Encryption Standard (AES), which
consumes more computation power [11]. Thus, the lightweight
encryption algorithm SG and its security flaws are the focus of
this study.

III. USING THE D-MONOMIAL TEST

As mentioned above, the SG produces a sequence of
ciphertexts in bits dictated by two LFSR registers. For this
reason, the SG falls under the category of ciphers defined by
Boolean functions. These Boolean functions may be examined

Corresponding author: Ahmed Alamer

Engineering, Technology & Applied Science Research Vol. 10, No. 2, 2020, 5132-5141 5133

www.etasr.com Alamer & Soh: Design and Implementation of a Statistical Testing Framework for a Lightweight …

using their algebraic normal form (ANF). In 2002, the authors
of [12] introduced a d-monomial test that examines the
randomness of the ANF of Boolean functions. Many
researchers have considered this test as the most appropriate for
examining ANFs. It has been used to detect the bias found in
gate complexities, which can be represented by Boolean
functions, and it has been extended to stream ciphers using
initialisation vectors (IVs) [13]. Further, this test has been
applied using polynomial description to find monomials of
degree d, where � = 1,2,… ,
 per polynomial, to find the
weaknesses in several other stream ciphers not dealt with by
the SG, such as the ciphers Trivium and Grain [14]. Because
the SG is a Boolean function that can be expressed in ANF, the
first hurdle that needs to be cleared by the SG is the d-
monomial test, which we have specifically adapted for our
purpose of examining the SG.

A. Our Approach to the d-Monomial Test

The treatment of this subject in [13] explains the work of
[12] and their own adoptions of the tests. The fundamental idea
behind our approach is that each bit of the SG output is viewed
as a Boolean function of all different key variables (i.e. the
initial loading of the LFSR). Given a Boolean function ��� ⟶��, and vector � with �� as an element, we have:

����� = ��⨁����⨁…⨁����⨁�����������, … ,��. (1)
This function can be transformed as:

�∧���� = ∑ ����∏ ��#$��%�#∈�'� (2)

where �∧ is a multivariate polynomial representation of �. The
expression of �∧ is used for convenience in finding the algebraic
form of � , as this is generally given in a truth table. This
expression of �∧ is comprised of permutations of monomials in ��. This is also based on the original Boolean function f. The
subjects of this test are these monomials. The d in this test
pertains to the number of non-zero bits in the Boolean string. It
is the Hamming weight (i.e. the length of the longest monomial
in the ANF). Practically speaking, this test involves counting

the number of �∧���� = 1 with Hamming weight �. Moreover,
the keystream length of the SG is (=	*2+ 	– 	1-�2.���, where /
is the degree of (0123 , and 4 is the degree of (0125 . This
length is not a power of 2, so the largest Boolean function we
can use is obtained by taking the largest power of 2 less than (
as the length of the truth table. Thus, we use:

67#8 =	 9:;<��2+ − 1�.2.��> (3)
and choose
 ≤ 67#8 for the Boolean representations of the
relevant cryptographic bits.

In general, �����,… , ��� is the Boolean function
representing the @.A output bit ��@� of the keystream ���, ��, … �
of an SG. As the key B = ���, … , ��� ranges over ���, the @.A
bit of the keystream produces the ANF of the Boolean function ��. We can then use fast Möbius transform to compute it for
each � that we choose to represent. As shown in [12], the
number of weight d monomials that appear in the ANF of a

random function has an approximately normal distribution, as
follows:

CD�� *�E-, ��F*�E-		G (4)

The author of [12] proposed H� testing to examine this
property based on the null hypothesis that the original Boolean
function � is not random (i.e. comes from a known
distribution). In the context of this study, when we describe the
test as passing, this means we can reject H0. For Example 1,
LFSRA corresponds to (��+ 	� + 1) and LFSRS to (�L + 	� + 1)
as characteristic polynomials. We initialized both LFSRs with
all possible values and then used (3), which yielded keystream
length 56, which means we had a truth table of length 32. We
then used Möbius transform to obtain the ANF. Next, we
examined every monomial weight to calculate how many exist
per function, and we applied the H� tests. For the algorithm for
this test and other monomial tests, see [14], in which these tests
to IV-based ciphers using IV were applied. In our case, we
used the initial LFSRs’ loading, while authors in [15]
performed this test on the SSG, which is a variant of the SG.
However, the test had to be adapted because there are two
LFSRs in the SG to generate the keystream but only one in the
SSG. For the monomial distribution test, we needed to count
the number of monomials across all functions. We performed
this calculation using the ANF representation of the functions.
For a particular monomial (say x1x3), we counted how many
functions contain that monomial. Finally, we compared the
monomial count with the expected monomial distribution [14].
In short, the difference between the two tests is that in the �-
monomial test, we counted the number of monomials with a
certain weight for each function.

B. Our Experiments for the d-Monomial Test

To perform this test, we set up all combinations of pairs of
primitive LFSRs with relatively prime lengths and applied three
different scenarios:

• We initialized both LFSRs with all possible random values.

• We fixed the control LFSRB with chosen values and varied
LFSRA with all possible random values.

• We fixed the input LFSRA with chosen values and varied
LFSRB with all possible random values.

For each LFSR combination, in each scenario, we created a
truth table of the maximal length possible given the applicable
keyspace and the limitation form from (3). We performed
exhaustive computations for all admissible pairs of primitive
LFSRs, and we tested the SG outputs corresponding to LFSRs
of combined length up to n=19. As Tables II and III show,
certain bit functions failed the randomness test at 0.01 and 0.05
levels of significance, therefore they have an ANF that is far
from that expected of a random function. Note that for LFSRs
of combined length 16–19, we took half of the maximum
keystream length possible and therefore half as many ��O
because of memory constraints in the computations. The

examples in Tables II and III illustrate the �-monomial test. For
the results of this test for SG degrees 7–15 with full keystream
output applying (3), we used the SSG results from [15] for

Engineering, Technology & Applied Science Research Vol. 10, No. 2, 2020, 5132-5141 5134

www.etasr.com Alamer & Soh: Design and Implementation of a Statistical Testing Framework for a Lightweight …

comparison (see Table I, last column). For degrees 16–19, we
used half of the keystream outputs and applied (3) (see Table
II). By applying the monomial distribution test to the first
example, we found that the keystream fails in 16 out of 24 pairs
for SG with degree 7, therefore the passing percentage is
approximately 33.33%. More extensive results are reported
later in this paper for higher degrees.

TABLE I. D-MONOMIAL TEST FOR SG DEGREES 7–15, WITH FULL
KEYSTREAM OUTPUT USING H� TEST, DISPLAYED WITH SSG

RESULTS FROM [15] FOR COMPARISON

SG

degree

Number

of LFSRS
pairs

Number

of fi

Fails at

α=0.01

Total

passes

Passing

percentage

SSG

passing

percentage

7 24 768 251 505 67310% 98.6%

8 72 4608 1561 2255 66124%

9 72 9216 3121 4329 66135%

10 216 55296 27847 27359 49640%

11 624 319488 55203 198895 82721%

12 648 663552 339627 206071 48817% 99.8%

13 2520 5160960 2831437 2083684 45137%

14 3840 15728640 7938000 6542587 49531% 99.9%

15 3840 31457280 18213724 13183968 42100%

TABLE II. D-MONOMIAL TEST FOR SG DEGREES 16–19, WITH HALF
OF KEYSTREAM OUTPUT USING H� TEST

SG

degree

Number of

LFSRS pairs

Number

of fifififi Fails at

α=0.01

Passing

percentage

16 50 409600 198895 51441%

17 50 819200 510001 37744%

18 50 1638400 932719 43071%

19 50 1114112 655568 41158%

TABLE III. EXHAUSTIVE TESTING RESULTS FOR MAXIMAL

MONOMIAL TEST FOR COMBINED LFSR LENGTHS 7-9

LFSRA LFSRB

Observed

with fixed

LFSRB

Observed

with fixed

LFSRA

Number

of

functions �� + �� + 1 �L + �� + 1 0 12 32

�L + �� + 1 �� + �� + 1 0 14 32

�L + �� + 1 �� + �	 + 1 0 14 32

�L + �	 + 1 �� + �� + 1 0 16 32

�L + �� + 1 �R + �� + 1 0 66 128 �L + �� + 1 �R + �� + 1 0 66 128

�R + �� + 1 �L + �	 + 1 0 70 128

�R + �� + 1 �L + �� + 1 0 68 128

C. Maximal Degree Monomial Test

The maximal degree monomial is the monomial where all
variables are factors in the term. Thus, when taking a binomial
function’s ANF for variables ��, ��, �� , the maximal degree
monomial will be the term �S������ (�S is the coefficient of
the term with maximum weight). This monomial may not be
present in an arbitrary ANF. It is unlikely to exist if lower
degree monomials do not exist, but its existence is an
indication of how the ANF follows proper mixing of bit values.
It is therefore worth testing. Here, we followed [14], which
demonstrated that the maximal degree monomial may be
detected using the Reed-Muller transform by conducting an
XOR of all entries in the truth table. The existence of this
monomial may be checked by XORing the first keystream bit
from the initialisation. We then determined whether this exists

in the output of the cipher. See [14] for a full description of this
test. The results are presented in Table III and discussed below.

D. Discussion of d-Monomial and Maximal Degree Monomial

Tests

For the higher degrees of 16–19, we chose 50 LFSR pairs

and used the first half of the keystream output *2+	– 	1-�2.���
bits to derive the maximal Boolean function possible, which
was then subjected to the �-monomial test. This was done for
computational efficiency. Table I shows that varying
percentages of keystream bits ��, from 18–58%, failed the �-
monomial test at significance level α=0.01. We also carried out
a limited d-monomial test on the SSG for comparison (Table I).
This exhaustive testing provided further evidence that the SG is
much weaker than the SSG. Although the data in Table II are
not exhaustive, they show that the same kind of failure rates
continued for the d-monomial test applied to 16–19 SG degrees
at T=0.01 significance level. We performed a maximal degree
monomial test for SG degrees 7–15 and presented a chosen
sample for LFSR pairs of degrees 7–9. The maximal degree
monomial occurred roughly between 37% (12 of 32, indicated
by dividing the number in Column 4 with Column 5) to 54.6%
(70 of 128). We observed that if LFSRs (the controlling LFSR)
is fixed, the output is linear, and thus no monomial of degree
≥1 appears, which directly rules out the maximal degree
monomial. In summary, it is ideal for an SG to have a high
degree of monomials because this makes more difficult to
guess the Boolean function behind it. However, as shown in
Table I, the percentage of passing samples decreases with
higher degrees, meaning that the failure to be random becomes
high. Conversely, we can keep the degree of the monomials
low, which the data show to have a high pass rate, however this
has the disadvantage of being computationally easy to break.

IV. TESTING FOR THE UNIQUE WINDOW SIZE

The unique window size (UWS) of a keystream is the
minimal length w where every observed window of length w in
the keystream is unique. An m-sequence (pseudorandom binary
sequence) of period 2n-1 is generated by an LFSR of length n.

Thus, � = *��0�, … ,��U − 1�- ∈ ��� is an arbitrary U -tuple

over ���, where 1 ≤ U ≤
 Then we used the function:
6��� = V2��W 								@�		� ≠ �0,0,… ,0�	

2��W − 1																						Y:�Y		 				 (5)
where 6��� denotes the number of times the k-tuple a appears
as a ‘window’ *��@�, ��@ + 1�,… . ��@ + U − 1�- of the m-

sequence *��4�-.Z�. Therefore, it is a count of repetitions of the

tuple that appear in the keystream.

For an LFSR, the UWS is trivially n+1 where
 is the
length of the LFSR. Further, if we let the LFSRs in the SG be

run for a full period, that is, for *2+	– 	1-�2.��� output bits, this
corresponded to about twice as many clock cycles, namely �2+ − 1��2. − 1� cycles, since / and 4 were chosen to be
relatively prime. This means that the state space is the product
of the two state spaces. In the following example, we
investigated the UWS distribution for the SG. For Example 2,
LFSRA was �� + � + 1 and LFSRB was �L + � + 1 with initial
states of 001 and 0001, respectively. The LFSRA output was

Engineering, Technology & Applied Science Research Vol. 10, No. 2, 2020, 5132-5141 5135

www.etasr.com Alamer & Soh: Design and Implementation of a Statistical Testing Framework for a Lightweight …

0011101 and the LFSRB output was 000111101011001.
Therefore, the SG output (keystream) was
11010110101011000100101110011101001100010111101011
100111. Next we found the UWS, which in this case was 11.
We examined the UWS for a certain degree (i.e. the total length
of the two LFSRs) for SG. For example, for degree 8, we could
see that the UWS was not well-distributed. There was a large
variation in size (Table IV). Table VI shows the UWS
computations for the different LFSRs combinations for SG
with degree 8.

TABLE IV. UWS COUNT FOR SG KEYSTREAM OF DEGREE 8 WHERE

THE AVERAGE OF UWS IS 13.25

UWS 11 12 13 14 15 16

Count 4 6 4 2 6 2

A. UWS Tests: Results, Statistical Tests and Observations

We performed exhaustive testing of the UWS distribution
for the SG keystream using Algorithm 1:

Algorithm 1 UWS Algorithm
Given a periodic bit sequence B[i] with period P, the UWS

algorithm calculates the UWS.

Given: B = Periodic bit sequence, P = Period of B.

Calculate: L = Minimum subsequence length such that all
L-bit subsequences are unique.

Initialize L with 1.

REPEAT
for each bit index, i of B do

Test

for each bit index, j of B greater than i do

if L-bit subsequence of B starting at i = L-bit
subsequence of B starting at j then
INCREMENT L

CONTINUE the next REPEAT loop

end if
end for

end for

UNTIL all L-bit subsequence of B are unique.
Return L

Authors in [15] introduced general observations, whereas
we conducted deeper analysis with more tests and
investigations to produce a greater understanding of the SG’s
weaknesses based on tests and predictions applied on the UWS.
Figure 1 shows the UWS, also called the minimal window size,
for degree 20 of the SG. We ran the computations for 70,416
LFSRS pairs. As shown in Figure 1, the UWS is concentrated
between 37 and 41. This means that it is highly likely to be
concentrated below approximately 2n, where n is the combined
degree of the SG, indicating that a distinguishing attack on SG
may be feasible. As shown in [16], UWS is a very good
indicator of the randomness of a keystream. This relationship is
discussed below. To explain the maximum order complexity of
a given sequence 1, it is necessary to find the possible shortest
FSR that can produce 1. This concept was introduced in [17] in
1990. Thus, for 1, the maximum order complexity is equal to
1+l, where : represents the longest s ⊂ S length that can be
found twice within S, and that is our UWS. The authors of [17]

found an approximation of maximum order complexity
distribution of a chosen pseudorandom binary sequence. More
importantly for our purposes, the UWS dependence on the
choice of polynomials is an indicator that there might be a
possible distinguishing attack based on this variability. Of
course, the LFSR polynomials are public knowledge, by
Kerchoff’s principle, and this can be used as a guide in
choosing good polynomials from the vast number of choices

φ
������

� for degree
. If the SG user broke Kerchoff’s principles
and kept the polynomials secret, as is sometimes ill-advisedly
suggested, the investigation of the UWS would enable an
attacker to mount an attack more efficient than the brute force
attack on the polynomials. Recall that when the polynomials
are kept secret, their degree sequences can be considered a part
of the key, squaring the search space for brute force attacks.
The UWS enables one to search a much more limited set of
polynomials. See Table V for UWS distribution in the SG
keystreams of degree 15.

Fig. 1. UWS distribution for degree 20

B. Statistical Distribution and Prediction Modeling

Using Easyfit and R software, we confirmed that the UWS
of degree 20 (UWS20) was skewed (see Figure 1). In fact, it
approximately follows a lognormal distribution, as presented in
Figure 2. The distribution function of lognormal distribution is
given by:

C�ln �; _, `� � abcd��ef ghi�''j' k
l√�n (6)

Given that the SG keystream’s UWS exhibits an
approximate lognormal distribution, we can follow standard
confidence interval information, such as the 68-95-99.7 rule, in
determining the range of probable UWS values in the
keystream by taking the log of UWS. Using the Bartel rank
test, Cox Stuart test, rank test and runs test, we found that the
sequence of data (UWS20) is a non-random sequence
(p<0.001). This indicates that this sequence of data could be
predicted using statistical models. We then used several
methods to learn about the pattern and predict the sequence,

Engineering, Technology & Applied Science Research Vol. 10, No. 2, 2020, 5132-5141 5136

www.etasr.com Alamer & Soh: Design and Implementation of a Statistical Testing Framework for a Lightweight …

namely: 1. Generating a theoretical lognormal sequence from
the mean and standard deviation of observed data of the same
length and comparing the accuracy of prediction, 2. Using a
linear regression method to predict and check the accuracy of
the predicted sequence, and 3. Using a non-linear (non-
parametric regression) method to predict and check the
accuracy of the predicted sequence (including validation and
calibration).

Fig. 2. Comparison of CDFs of observed and theoretical distributions,

UWS20

TABLE V. UWS COUNT FOR SG KEYSTREAM OF DEGREE 15

UWS Count UWS Count

24 4 34 48

25 52 35 32

26 112 36 12

27 166 37 20

28 232 38 4

29 168 39 6

30 146 40 4

31 116 42 10

32 92 45 2

33 54

1) Method 1

Here, we used R software to generate an equal number of
observations (70,416) from lognormal distribution using the
mean and standard deviation of observed UWS20. We then
differentiated between observed UWS20 and simulated
UWS20 and compared the accuracy (the difference between
the observed and simulated predicted UWS20 being 0). The
accuracy was 7.8%, which was expected, as UWS20 was found
to be non-random. Hence, a random sequence may not entirely
predict the sequence.

2) Method 2

We used the linear regression model, where the outcome
was UWS20 and the explanatory variables were input degree,
input weight, control degree, control weight, input polynomial,
and control polynomial. Each input and control polynomial
variables had polynomials of up to 17 degrees and hence
produced 17 separate binary variables based on the possible
terms in a primitive polynomial of degree 17 (for an SG with

degree 20, the highest LFSR degree is 17 and the lowest is 3
for a primitive polynomials combination).

Step 1 of Method 2 was to extract 34 variables from the
input and control polynomials and add them to four other
independent variables to form a pool of independent variables.

In Step 2, we ran a simple linear regression model on each
of suitable candidates for the multi-variable linear regression
model. The input degree was found to be the strongest
predictor because it had the highest R-square value and
accuracy rate. Interestingly, it was highly correlated with the
control degree and, as such, the two cannot be put together in
the same model. This means that control degree and input
degree as variables are correlated, or input degree =�(control
degree), so just one of them is necessary.

TABLE VI. UWS COMPUTATIONS FOR DEGREE 8 WITH LFRPS PAIRS

Input LFSRA Control LFSRB UWS

�� K � K 1 �R K �� K 1 13

�� K � K 1 �R K �� K 1 15

�� K � K 1 �R K �� K �� K � K 1 11

�� K � K 1 �R K �L K �� K � K 1 14

�� K � K 1 �R K �L K �� K � K 1 12

�� K � K 1 �R K �L K �� K �� K 1 15

�� K �� K 1 �R K �� K 1 15

�� K �� K 1 �R K �� K 1 13

�� K �� K 1 �R K �� K �� K � K 1 15

�� K �� K 1 �R K �L K �� K � K 1 12

�� K �� K 1 �R K �L K �� K � K 1 14

�� K �� K 1 �R K �L K �� K �� K 1 11

�R K �� K 1 �� K � K 1 16

�R K �� K 1 �� K �� K 1 12

�R K �� K 1 �� K � K 1 12

�R K �� K 1 �� K �� K 1 16

�R K �� K �� K � K 1 �� K � K 1 15

�R K �� K �� K � K 1 �� K �� K 1 13

�R K �L K �� K � K 1 �� K � K 1 12

�R K �L K �� K � K 1 �� K �� K 1 11

�R K �L K �� K � K 1 �� K � K 1 11

�R K �L K �� K � K 1 �� K �� K 1 12

�R K �L K �� K �� K 1 �� K � K 1 13

�R K �L K �� K �� K 1 �� K �� K 1 15

In Step 3, we calculated and analyzed the multicollinearity
among the univariable significant variables to determine which
variables had to be discarded from the multi-variable regression
model. Multicollinearity is defined here as high correlation
among explanatory variables, which can be assessed from a
matrix of correlation coefficients of the explanatory variables
along with p values. We discarded the control degree, input
polynomial of degree 14 and control polynomial of degree 17
from the model due to multicollinearity with other covariates.
We also checked first order interaction.

In Step 4, a backward stepwise multi-variable regression
model was run with the suitable variables for the prediction of
UWS20. We could then retain 24 variables (in the model),
which were used in our final predictive model.

Predicted:log(UWS20)=3.9541011-InputDegree*0.0121524+

InputWeight*0.0005625-ControlWeight*0.1042675 - input1 *
0.0023569 + input11 * 0.0051394 -input12 * 0.0057957 -

Engineering, Technology & Applied Science Research Vol. 10, No. 2, 2020, 5132-5141 5137

www.etasr.com Alamer & Soh: Design and Implementation of a Statistical Testing Framework for a Lightweight …

 input13 * 0.0122590 - input17 *0.0106996 + control1 *
0.1060109 + control2 * 0.1035639 +control3 * 0.1034507 +
control4 * 0.1062923 + control5 *0.1051447 + control6 *
0.1061192 + control7 * 0.1001495 +control8 * 0.1053034 +
control9 * 0.1104407 + control10 *0.1036258 + control11 *
0.1058865 + control12 *0.0999843 + control13 * 0.0953821 +
control14 * 0.1055764 + control15 * 0.1042613 + control16 *
0.1049406

Input 17 refers to the term of power 17 in the input LFSR
and similarly in control 17 (the number indicates the power of
term in the given polynomial). Using the above model, UWS20
can be predicted by inserting the values of the variables in the
model. A numerical value must be inserted for numerical
variables, with 0 = absence and 1 = presence. This model can
be used as a selection tool for the LFSRs pairs by choosing two
primitive polynomials and inserting their parameters in the
model to see if the UWS is high enough for the chosen pairs.

In Step 5, bootstrap validated bias was used to correct the
adjusted R-square and assess the discrimination. Calibration
graphs were produced to assess the calibration of the model.
These were done using the rms package in R. Afterwards, we
measured the accuracy with respect to the difference of
observed and predicted UWS20. Sensitivity analysis was
performed to ensure that the effect of a relatively smaller
sample size on prediction capabilities was not detrimental.
Hence, we randomly selected 50%, 25%, and 10% of the data
and performed the above calculations again to check the
accuracy and performance of the prediction model.

In Method 2, the accuracy was approximately 12.1%.
However, the accuracy increased from 12.1% to 37.8%, 61.8%,
78.6%, and 87.1% if we allowed the prediction to be within 1
(e.g. observed UWS20 was 40, prediction is 39), 2, 3, and 4
degrees of tolerance with observed UWS20 respectively.
Although the bootstrap validated adjusted R-square (0.262)
indicated a weak to moderate prediction performance, the
calibration graph showed good calibration between the
observed and predicted UWS20 (see Figure 3).

3) Method 3

Using R software (e.g. np package), we implemented non-
parametric regression analysis with the same modeling
structure as the multi-variable linear regression model but
without any assumptions about the inherent distribution of the
observed UWS20. Unfortunately, Method 3 failed to produce
better accuracy than the parametric multi-variable linear
regression model. Thus, we used the multi-variable linear
regression model as the final model because it was more
powerful than nonparametric regression.

C. Implications of the UWS

When coupled with statistical techniques, the UWS can be
used as a method of sampling to help better comprehend the
behavior of a cipher under testing. As discussed, we used
regression tools as a support for detecting cipher properties.
Thus, sophisticated pattern recognition methods may be used
for improved prediction. Lastly, we considered the given
sequence s and what the linear complexity (LC) of an LFSR
produces upon it. Thus, we analyzed s against UWS. Both LC

and UWS must be higher for good security. Thus, like LC,
UWS can be used as a measure of security strength.

V. PROPOSED NEURAL NETWORK PREDICTION MODEL

Neural Networks (NNs) have many everyday applications,
but they are principally focused on simulating the ability of
neurons in the human brain to process information and data.
The human brain consists of nerve cells and neurotransmitters
to handle orders and inputs, and a NN follows this structure,
processing information and learning from it to predict the
outcomes based on inputs (data). An NN functions by
employing a flexible algorithm that learns from the available
data and produces expectations in response to them [18]. NNs
have many applications, including climate forecasting [19],
stock market prediction [20], music production [21], or even
cancer prediction [22]. They may also be applied in the fields
of confidentiality and security of information, such as in the
selection of keys used for encryption or in pattern recognition
[23]. It is important to note that deep NN modeling is still a
valid method and is evolving to be used in new areas, as shown
in [24] which is an interesting study demonstrating the
effectiveness of an NN-based model for investigating a
complex system.

Fig. 3. Calibration graph for predicting UWS of degree 20 SG

A. Neural Networks and Security

Using the NN model provided by authors in [30] in 1976, it
was possible to emulate the method of exchanging secret keys
as a means of communicating through an insecure network.
Especially in cases where a large number of keys are required,
the application of NN models allows the study of the most
secure ways to handle the exchange of keys using an unsafe

Engineering, Technology & Applied Science Research Vol. 10, No. 2, 2020, 5132-5141 5138

www.etasr.com Alamer & Soh: Design and Implementation of a Statistical Testing Framework for a Lightweight …

communication channel [25]. NNs have also been implemented
to produce a secret key on a public network [26]. It is important
to select a design and the appropriate weights for the NN to test
and choose the best encryption system and to ensure that the
messages are encrypted correctly [27]. To follow up the applied
studies of NN models in terms of design and testing of
encryption systems as well as measuring their effectiveness and
potential problems, see [28]. Because there are limited studies
on the use of NN models to test the randomization of the binary
sequence required for use in an effective cryptosystem, it is
important to study the NN as a measurement tool. Therefore,
an extra step must be added in the implementation of the NN to
enhance the desired cryptosystem.

B. Neural Network Model Implementations

Given that the pseudorandom binary sequence plays an
important role in encryption, the selection of the best binary
sequence should be as random as possible to produce a
powerful cipher (algorithm) that will generate an attack-
resistant sequence. Therefore, in this study we employed NN
models to measure the prediction based on UWS to ascertain
whether they are able to predict UWS. The study succeeded,
and the results were very promising, enabling us to measure the
strength of the pseudorandom binary sequence, which is
predicated on the strength of the algorithm (cipher) produced
by it. These results may be applied to other algorithms, thus
contributing to the analysis and selection of the best encryption
systems. We calculated UWS using EC2 for SG and SSG to
obtain data for a large number of these algorithms at different
degrees (SG and SSG). We sought to verify the validity of the
application of NN at the different SG and SSG degrees along
with the accuracy of our expectations. To confirm the
effectiveness of the models, a high prediction rate exceeding
97% for some degrees and of no less than 90% for the others
with negligible mean square errors (MSEs) is expected. Tables
VII–IX detail the anticipated results. From this, we conclude
that the NN is a more effective tool for prediction than the
other statistical methods previously introduced in this study.
The MSE is a good indicator of the validity of the method used
[29] which protects the messages and shows the accuracy of
the results by measuring MSE.

C. NN Models and Results for SG

Table VII shows that UWS20 comprises three layers with
ten, five and two nodes each, exhibiting a learning rate of 0.001
and an MSE of 0.0088, which is very low and indicates the
effectiveness of the model when applied to UWS prediction.
There were 6,791 overall training parameters. 56,333 were
used as exercise data, representing 80% of the total data. The
remaining 20% were used for testing and validating. The
effectiveness of the forecast pertains to 94.30% of the total
data. By way of another example relating to UWS24, we found
the effectiveness of the prediction to be 95.42% and the
learning rate to be 0.0001 with an MSE of 0.0019 and the same
number of training parameters. The training dataset was
192,750.

D. Comparison with Self-Shrinking Generator

We found that with a range from UWS4 to UWS20 in a
single model, the number of layers was four with 100, 50, 20,

and 10 nodes on each layer, exhibiting a learning rate of 0.0001
with an MSE of 0.0012. The training set consisted of 58,232
samples, the validation set of 14,558, total training parameters
were 6,591 and the prediction rate was 96.05% (Table VIII).
For UWS24, we located the same number of layers, nodes and
training parameters and the same learning rate with an MSE of
0.0098, with training set equal to 22,1184, with validation set
equal to 55,296, and with a prediction rate of 97.01%
confirming the efficiency of the models for SG and SSG
(Tables VII–IX).

TABLE VII. SG MODEL RESULTS FOR THE NEW NN MODELS

INCLUDING RESULTS FOR DEGREES 20, 21, 23, AND 24

UWS20

model

UWS21

model

UWS23

model

UWS24

model

Layers 3 4 4 4

Number of nodes 10, 5, 2 50, 20, 10, 5 50, 20, 10, 5 50, 20, 10, 5

Learning rate 0.0001 0.0010 0.0001 0.0001

MSE 0.0088 0.0138 0.0033 0.0019

Training set 56333 196502 713395 770997

Validation

sample
14084 49126 178349 192750

Total parameters 6791 6791 6791 6791

Prediction

percentage
96.01 94.07 95.39 95.42

TABLE VIII. SSG MODEL RESULTS FOR THE NEW NN MODELS
INCLUDING RESULTS FOR DEGREES 4–20, 21 AND 22

 UWS Degrees 4-20 UWS21 model UWS22 model

Layers 4 4 4

Number of nodes 100, 50, 20,10 100, 50, 20,10 100, 50, 20,10

Learning rate 0.0001 0.0001 0.0001

MSE 0.0012 0.0014 0.0160

Training set 58232 67737 96025

Validation sample 14558 16935 24007

Total parameters 6591 6591 6591

Prediction percentage 96.05 96.66 89.61

E. The Difference between SG and SSG

SSG is another type of cipher derived from SG. However,
in SSG, the process of selection and input is conducted using a
single primitive polynomial working as an LFSR. In general,
this has been found to be more effective in the field of
confidentiality. Using the same principles as SG, the SSG
keystream was used to calculate UWS. When applying the NN
model, the dependent variable was UWS, as it was in SG, and
the independent variables were the SSG polynomial degree and
the polynomial weight. The results of this prediction can be
seen in Tables VIII and IX.

F. NN Model Design

We used a sequential model to define the model layer by
layer, and we used a rectified linear unit (ReLu) for an
activation function. Our model had four hidden layers, with
100, 50, 10, and 5 nodes and the output layer had 1 node. The
loss function was defined as the MSE, and the learning rate was
0.0001. The optimization technique was regulated by the
‘Adagrad’ optimizer, and the data were fitted to train the
model. Most of the data refer to SG with UWS20 under slight
modifications.

Engineering, Technology & Applied Science Research Vol. 10, No. 2, 2020, 5132-5141 5139

www.etasr.com Alamer & Soh: Design and Implementation of a Statistical Testing Framework for a Lightweight …

1) Cost Function

To ascertain whether the model was learning as required,
we needed to calculate the MSE, which needed to be small to
demonstrate that the prediction was close to the actual output
data. The smaller the MSE, the better the model and the more
accurate the prediction. The mathematical equation for the
MSE is:

�
�∑ o�� − ��

^ q�� (7)

where n is the number of data inputs (simulations), �� is the
observed data and ��

^
 is the predicted data.

TABLE IX. SSG MODEL RESULTS FOR THE NEW NN MODELS

INCLUDING RESULTS FOR DEGREES 23, 24, AND 25

 UWS23 model UWS24 model UWS25 model

Layers 4 4 4

Number of nodes 100, 50, 20, 10 100, 50, 20, 10 100, 50, 20, 10

Learning rate 0.0001 0.0001 0.0001

MSE 0.0046 0.0098 0.0052

Training set 285568 221184 1036800

Validation sample 71392 55296 259200

Total parameters 6591 6591 6591

Prediction percentage 90.14 97.01 97.14

2) The Rectified Linear Unit Activation Function

This function is nonlinear and has become popular for use
in deep learning. Since the data we entered were positive and
nonlinear, we achieved the best results using the ReLu
activation function. Its advantage is that it is a fast learner and
thus reduces the cost of use. We used ReLu in the inner layers
of our models with the following formula:

��� � max��, 0� (8)

Here, the learning rate must be adjusted to reduce the MSE
as much as possible. We found a learning rate of 0.0001 to be
the optimal setting (see Tables VII–IX). The importance of NN
for our study lies in its ability to accurately predict UWS,
which makes it an optimal instrument for measuring
randomness in a given binary sequence, which is important in
applying effective and safe encryption. This study and its
application of NN models paves the way for future applications
to measure the validity of the cryptosystems used, evaluate
their effectiveness and further develop them. We found that by
comparing NN models to study the behavior of the randomized
binary sequence, more effective and more efficient predictions
could be made than those of the model in the previous section,
which used multivariable linear regression (a non-NN-based
model). Further, the extent and efficiency of the predictions
remained high, even though SSG appeared to be more random
than SG. This can be seen in the results of the prediction in
Tables VII–IX, which confirm that NN-based models are
effective even in cases of random and discrete data, as in our
case.

VI. OUR FINDINGS

This paper analyzed new weaknesses in the SG, a popular
synchronous stream cipher. The first test was the d-monomial
test adapted to SG (applied to the ANF representation of

Boolean functions), which showed significant weaknesses in
the SG output. We also investigated the dependence between
the controlling LFSR and the non-linearity of the resulting
keystream. After this, we performed a side test, called the
maximal degree monomial test, which is related to the d-
monomial test. In the result analysis, we reported a better
understanding of the optimal points of the SG, showing when it
was at its best and worst. Finally, we analyzed the cipher
technique using the UWS and demonstrated dependencies
between the UWS and the two LFSR polynomials. The results
were assisted by statistical techniques provided by the UWS.
Using the UWS, we showed the effect of the LFSR choice on
possible distinguishing attacks on the SG. The results
confirmed that the UWS is a viable measure of cryptographic
strength. Lastly, the statistical model for the UWS model can
be used to test the SG pairs, which can help to measure their
strength based on their UWS so the user can choose the pairs
with a higher UWS. The � -monomial test showed that the
controlling LFSR causes more non-linearity if it has a higher
degree than the input LFSR. Conversely, using the UWS test
and modeling, we found that the input LFSR helps the
prediction, which confirms that controlling LFSR with higher
degree than input LFSR makes better choices. Additionally, the
most effective elements (in decreasing order) in the model to
help the prediction are presented in Table X.

TABLE X. MOST EFFECTIVE ELEMENTS IN THE PREDICTION MODEL

FOR UWS20

Variable R square

Input polynomial term of order 17 0.18

Input degree 0.127

Control degree 0.127

Control weight 0.10

Input weight 0.09

Input polynomial term of order 12 0.09

Input polynomial term of order 13 0.08

Input polynomial term of order 14 0.08

Input polynomial term of order 15 0.08

Input polynomial term of order 16 0.08

As another measure of validity analysis, we modeled
UWS17, UWS18 and UWS19 and found similar prediction
performance (adjusted R-square) and accuracy. By using 50%,
we modeled the data with similar accuracy with an R-square of
approximately 26.6%. This means that we can model with less
data, which reduces computational complexity. To ensure that
every state was unique, we applied the UWS to find the
minimal length of the SG keystream. Doing so, we found that
identifying the UWS can lead to discovering the LFSR pairs’
weakness, which, in forming the keystream, can in turn lead us
to understand which LFSR pairs should be avoided. Our
research also showed that by using statistical tools along with
UWS, we can experimentally predict the SG’s behavior. This
again illustrates the possible weaknesses in the SG keystream
against attacks that may use this measure. Finally, we found the
possibility of using NN models to predict UWS with better
effectiveness and promising results compared with the non
NN-based models. NN models are an effective measuring
instrument for non-LC tests and should be adopted in the field
of cryptanalysis more often.

Engineering, Technology & Applied Science Research Vol. 10, No. 2, 2020, 5132-5141 5140

www.etasr.com Alamer & Soh: Design and Implementation of a Statistical Testing Framework for a Lightweight …

VII. CONCLUSIONS

The goal of this research was conducting exhaustive
experimental testing of some cryptographic security measures
applied to the SG. By running complex computations for
different SG degrees, it was found that the SG keystream
output failed the d-monomial test. Thus, it is possible to
establish distinguishing attacks on this kind of stream cipher.
This test can be applied to other ciphers in different ways,
depending on whether it is an IV-based or IV-less cipher.
Additionally, the controlling LFSR had a greater effect than the
input LFSR on the ANF non-linearity. This was confirmed by
applying the d-monomial test. UWS test results can identify the
LFSR pairs’ weakness. A weakness can result in vulnerability
to attacks, thus the cipher user must pay attention to the LFSR
pairs selection.

We found that a model of the NN predictor offered highly
precise results that contribute to its efficacy as a tool for
measuring the extent of pseudorandom binary sequences and,
thereby, the strength of the produced encryption systems. The
results show that care must be taken when using the SG as a
cryptographic technique. First, with a clearer understanding of
the SG, analysts can design new attack techniques to mount on
the SG. Second, the UWS can be used to analyze any
keystream generated by any cipher. We intend to examine the
UWS on selected ciphers in the future. We also plan to dig
deeper into the mathematical relationship of the UWS and LC
for specific ciphers. Finally, we found that applying the models
by implementing the NN gave us superior results compared
with a multi-nonlinear regression model (non-NN-based
model).

ACKNOWLEDGEMENT

The authors would like to thank Molla Huq for the
comments on the Statistical Modeling, as well the Victorian
Partnership for Advanced Computing for the use of their
supercomputing facilities. In addition, the authors would like to
show their appreciation to Serdar Bostaz for his valuable
comments and feedback.

REFERENCES

[1] C. Paar, J. Pelzl, Understanding Cryptography: a textbook for students

and practitioners, Springer Science & Business Media, 2009

[2] A. J. Menezes, P. C. van Oorschot, S. A. Vanstone, Handbook of applied
cryptography, CRC Press, 1996

[3] W. Meier, O. Staffelbach, “The self-shrinking generator”, in:

Communications and Cryptography, Springer, 1994

[4] S. D. Cardell, A. Fuster-Sabater, “Cryptanalysing the shrinking

generator”, International Conference on Computational Science,
Reykjavík, Iceland, June 1-3, 2015

[5] D. Maimut, K. Ouafi, “Lightweight cryptography for RFID tags”, IEEE

Security & Privacy, Vol. 10, No. 2, pp. 76-79, 2012

[6] P. Caballero-Gil, A. Fuster-Sabater, M. E. Pazo-Robles, “New attack
strategy for the shrinking generator”, Journal of Research and Practice in

Information Technology, Vol. 41, No. 2, 2009

[7] D. Coppersmith, H. Krawczyk, Y. Mansour, “The shrinking generator”,
13th Annual International Cryptology Conference on Advances in

Cryptology, Berlin, Germany, August 22-26, 1993

[8] J. D. Golic, “Towards fast correlation attacks on irregularly clocked shift
registers”, International Conference on the Theory and Applications of

Cryptographic Techniques, Saint-Malo, France, May 21-25, 1995

[9] L. Simpson, J. D. Golic, E. Dawson, “A probabilistic correlation attack
on the shrinking generator”, Information Security and Privacy, 3rd

Australasian Conference, Brisbane, Queensland, Australia, June 21,
1998

[10] B. Zhang, H. Wu, D. Feng, F. Bao, “A fast correlation attack on the

shrinking generator”, Topics in Cryptology-CT-RSA 2005, The
Cryptographers’ Track at the RSA Conference, San Francisco, CA,

USA, February 14-18, 2005

[11] A. H. Al-Omari, “Lightweight dynamic crypto algorithm for next
internet generation”, Engineering, Technology & Applied Science

Research, Vol. 9, No. 3, pp. 4203-4208, 2019

[12] E. Filiol, “A new statistical testing for symmetric ciphers and hash

functions”, 4th International Conference on Information and
Communications Security, London, UK, December 9-12, 2002

[13] M. J. O. Saarinen, Chosen-IV statistical attacks on eSTREAM stream

ciphers, eSTREAM, ECRYPT Stream Cipher Project, Report 2006/013,
2006

[14] H. Englund, T. Johansson, M. S. Turan, “A framework for chosen IV

statistical analysis of stream ciphers”, 8th International Conference on
Progress in Cryptology, Berlin, Germany, December 9-13, 2007

[15] S. Boztas, A. Alamer, “Statistical dependencies in the self-shrinking

generator”, 7th International Workshop on Signal Design and its
Applications in Communications, Piscataway, USA, September 14-18,

2015

[16] D. Erdmann, S. Murphy, “An approximate distribution for the maximum
order complexity”, Designs, Codes and Cryptography, Vol. 10, No. 3,

pp. 325-339, 1997

[17] C. J. A. Jansen, D. E. Boekee, “Modes of blockcipher algorithms and
their protection against active eavesdropping”, Workshop on the Theory

and Application of Cryptographic Techniques EUROCRYPT 1987,
Amsterdam, The Netherlands, April 13-15, 1987

[18] K. Gurney, An Introduction to Neural Networks, CRC Press, 2014

[19] S. S. Baboo, I. K. Shereef, “An efficient weather forecasting system
using artificial neural network”, International Journal of Environmental

Science and Development, Vol. 1, No. 4, pp. 321-326, 2010

[20] E. Guresen, G. Kayakutlu, T. U. Daim, “Using artificial neural network
models in stock market index prediction”, Expert Systems with

Applications, Vol. 38, No. 8, pp. 10389-10397, 2011

[21] B. Gold, N. Morgan, D. Ellis, Speech and audio signal processing:
Processing and perception of speech and music, John Wiley & Sons,

2011

[22] A. Esteva, B. Kuprel, R. A. Novoa, J. Ko, S. M. Swetter, H. M. Blau, S.
Thrun, “Dermatologist-level classification of skin cancer with deep

neural networks”, Nature, Vol. 542, No. 7639, pp. 115-118, 2017

[23] A. Klimov, A. Mityagin, A. Shamir, “Analysis of neural cryptography”,
International Conference on the Theory and Application of Cryptology

and Information Security, Queenstown, New Zealand, December 1-5,
2002

[24] L. B. Salah, F. Fourati, “Systems modeling using deep Elman neural
network”, Engineering, Technology & Applied Science Research, Vol.

9, No. 2, pp. 3881-3886, 2019

[25] W. Kinzel, I. Kanter, “Interacting neural networks and cryptography”,
in: Advances in solid state physics, Springer, 2002

[26] T. Godhavari, N. Alamelu, R. Soundararajan, “Cryptography using

neural network”, 2005 Annual IEEE India Conference - Indicon,
Chennai, India, December 11-13, 2005

[27] E. Volna, M. Kotyrba, V. Kocian, M. Janosek, “Cryptography based on

neural network”, ECMS 2012, Koblenz, Germany, May 29-June 1, 2012

[28] A. El-Zoghabi, A. H. Yassin, H. H. Hussien, “Survey report on
cryptography based on neural network”, International Journal of

Emerging Technology and Advanced Engineering, Vol. 3, No. 12, pp.
456-462, 2013

[29] R. J. Rasras, Z. A. AlQadi, M. R. A. Sara, “A methodology based on

steganography and cryptography to protect highly secure messages”,
Engineering, Technology & Applied Science Research, Vol. 9, No. 1,

pp. 3681-3684, 2019

Engineering, Technology & Applied Science Research Vol. 10, No. 2, 2020, 5132-5141 5141

www.etasr.com Alamer & Soh: Design and Implementation of a Statistical Testing Framework for a Lightweight …

[30] W. Diffie, M. E. Hellman, “New Directions in Cryptography”, IEEE
Transactions on Information Theory, Vol. 22, No. 6, pp. 644-654, 1976

AUTHOR PROFILES

Ahmed Alamer conducted his postgraduate studies at Adelaide University

(BSc) and QUT University (MSc Degree), majoring in Mathematical Sciences
with a research focus in cryptography. He also graduated with a BSc Degree

in mathematical sciences from King Khalid University. He currently focuses
on the applications of mathematics in the field of cryptanalysis and security.

He is currently a PhD candidate at the Department of Computer Science and
Computer Engineering of La Trobe University, where he has published and

under-review papers in cryptology, neural networks applications in security,
statistical analysis and randomness testing, lightweight cryptosystem design,

and cryptanalysis. He has also held a lecturer position at the University of
Tabuk since 2012 and has organized several workshops in mathematics

applications there.

Ben Soh (S’89–M’92–SM’03) received his PhD degree in computer science

and engineering from La Trobe University, Melbourne, Australia, in 1995. He
is currently an Associate Professor with the Department of Computer Science

and Computer Engineering, La Trobe University. He has taught numerous
successful PhD graduates. He has authored more than 180 peer-reviewed

research papers and made significant contributions in various research areas,
including fault-tolerant and secure computing and web services.

