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Abstract—In this study, a new non-integer indirect adaptive 

control method with reference model is suggested for the class of 

non-integer order systems. The objective of model reference 

control is to include the output of the given reference fractional 

model in tracking the output of a controlled plant by using the 
concept of on-line goal adaptation. The stability of the closed-loop 

system is analyzed via the Lyapunov method. Finally, Matlab 

simulation results are presented to illustrate the effectiveness of 

the proposed method of indirect fractional model reference 
adaptive control. 
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I. INTRODUCTION  

Model reference adaptive control (MRAC) is one of the 
main approaches of adaptive control. The fundamental goal of 
adaptive control is to treat with system uncertainty and/or time 
varying system parameters. The essential idea in adaptive 
control is to design a controller which adapts itself to plant 
uncertainty or time variance in the plant dynamics. Adaptive 
control is one of the most important topics in the literature on 
control when the model of the system is uncertain [1-7]. 
Fundamental research efforts have been focused on MRAC 
designs for linear plants with parametric uncertainty. Generally 
in model reference adaptive control, the goal is to have a 
system that follows a certain system as a reference model. In 
reality, an adaptive controller is designed to achieve this goal, 
despite the uncertainties that may occur in the parameters of the 
system [8]. Fractional-order calculus is an area of mathematics 
that deals with integrals and derivatives of non-integer orders. 
In other words, it is a generalization of the traditional calculus 
that leads to similar concepts and tools, but with a much wider 
applicability. In the last three decades, fractional calculus has 
been rediscovered by engineers and scientists. It is applied in 
an increasing number of fields, including control theory among 
them. As an example, the modeling of viscoelastic materials 
has been done in many old and recent works using fractional 
order derivatives [10-11]. The success of non-integer order 
controllers is unquestionable due to the emergence of effective 
methods in differentiation and integration of non-integer order 

equations [12-13]. In recent years, an increasing number of 
studies related with the application of the fractional calculus 
(FC) theory are observed in many areas of science and 
engineering [14]. 

In this paper, a new control structure named Non-integer 
Indirect Adaptive Control for a Class of Non-integer Order 
System with Non-prior Knowledge is proposed to investigate 
the control for a class of fractional system. This novel method 
of control is based in MRAC configuration. Based on already 
reported results, in this paper, we propose a novel method to 
control a class of linear fractional-order systems based in 
MRAC configuration. This novel methodology of non-integer 
indirect adaptive control with reference model is proposed to 
guarantee stability and the tracking of the reference model. 
Two simulation examples are given to illustrate the 
performance obtained by the proposed indirect adaptive 
fractional control scheme. 

II. FRACTIONAL-ORDER DEFINITION AND PRELIMINARIES 

Fractional-order calculus or non-integer-order calculus is 
the generalization of the classical integer order calculus. There 
are several definitions for fractional order derivative and 
integral. Fractional calculus is considered as an extension of 
integer-order calculus to non-integer order calculus. The theory 
of derivatives and integrals of non-integer order was firstly 
mentioned by Leibnitz. After that, other definitions were 
generated by Liouville, Grunwald, Letnikov and Riemann. The 

integro-differential operator is given by
a t
Dα where: 
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where a denotes lower limits and t are the upper limits 
respectively of the operator, and a∈R is the order of integration 
or differentiation[9, 15, 16]. 
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The Riemann–Liouville derivative definition of the order α 
is described as: 
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where 1 ,n n nα− < < ∈� and 1

0
( ) xx eαα

∞ − −Γ = ∫ is the 

Gamma function, and f(t) is a continuous time function. 

The following definition is given in [13, 14]: 
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The Grunwald–Letnikov’s derivative definition can be 
written as [15, 16]: 
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where h denotes the time increment, 
t a

h

− 
  

is a flooring 

operator and the binomial coefficients. 

As the Grunwald–Letnikov’s fractional operator is more 
consistent than others, then the Grunwald–Letnikov’s 
fractional-order differential equations operator will be 
employed in this paper for computer numerical simulations due 
to its wide applications in engineering and well-understood 
physical interpretation. If the initial conditions are taken as 

zero, the Laplace transform of differintegral operator ( )a tD g tα
 

is obtained as: 
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In general, any fractional-order single input single output 
(SISO) system can be described by a fractional differential 
equation of the form [9, 11]: 
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indicates the fractional-orders and 
0 1 2, , ,...., na a a a  

0 1, ,..., mb b b

denote the system parameters. 

If 
0 1 0 1
, .... ...

n m
andα α α α β β β= = = = = = = , the system 

(8) is called a commensurate order system, otherwise system 
(6) indicates an incommensurate order system. 

III. MODEL REFERENCE ADAPTIVE FRACTIONAL CONTROL 

Adaptive control is a well-researched topic in control 
theory spanning several decades in research. The model 
reference adaptive control system is an important scheme in 
adaptive control. It may be treated as an adaptive system in 
which the desired performance is expressed in terms of a 
reference model. The configuration of the model reference 
adaptive control block is given in Figure 1. In the configuration 
MRAC the desired behavior is specified by a reference model, 
and the parameters of the controller are adjusted based on the 
error, which is the difference between the outputs of the closed-
loop system and the outputs of the reference model. The 
mechanism for adjusting the parameters of the controller in a 
model reference adaptive control can be obtained by applying 
the stability theory of Lyapunov. The MRAC structure is 
divided in four main parts: the plant, the controller, the 
reference model and the adjustment mechanism. 

 
Fig. 1.  Block diagram scheme of adaptive control with reference model 

To introduce the model reference fractional adaptive 
control problem, we consider a class of commensurate 
fractional order systems formulated as: 

( ) . ( ) . ( )
q

tD y t a y t b u t= +  (7) 

where ( )x t ∈�  and ( )u t ∈�  are the system state and the 

control variable respectively, a and b are unknown constant 
parameters but sgn(b) is known. The fractional reference model 

was chosen to generate the desired trajectory ( )my t which the 

plant output ( )y t has to flow. The reference model is given by: 

( ) . ( ) . ( )
q
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Subject to 
0

(0)
m m
y y= , the reference model is stable, i.e., 

am<0 and r(t) is the reference input. The parameters 

m ma and b are known constants, ( ) and ( )my t r t  are measured 

at each time t. The design objective is to make the tracking 

error ( ) ( ) ( )me t y t y t= − converge to 0. Let us first design a 

Model Reference Control (MRC), that is, the control design 
assuming all the parameters are known, to ensure that the 

output ( )y t follows ( )my t . We express the closed-loop system 

in terms of the time derivative of the tracking error 
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The basic state-feedback state tracking problem of this 
section is to design a state feedback law u(t) to control the plant 
given by (7). Firstly, we define an ideal controller that perfectly 

cancels out the uncertainty and enables ( )x t as: 

* *

1 2
( ) . ( ) . ( )u t y t r tψ ψ= +  (10) 

where  

*

1

ma a

b
ψ

−
=  and 

*

2

mb

b
ψ =  (11) 

The superscript (∗) denotes ideal constant values which are 
unknown. The tracking error equation is established as: 

( ) ( ) ( ) 0q

m
e t a e t− =  (12) 

The tracking error converges to zero exponentially and the 
system is asymptotically stable. When the plant parameters a, b 
are unknown, (10) cannot be implemented. To solve the control 
problem, we develop a new fractional indirect adaptive control 
design, which first adaptively updates the estimates of the plant 
parameters a and b and then calculates the controller 

parameters 
1( )tψ and 

2 ( )tψ in (10) from the plant parameter 

estimates. The real control input is: 

1 2( ) ( ). ( ) ( ). ( )u t t y t t r tψ ψ= +  (13) 

where: 
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ˆ( )a t and ˆ( )b t  are the estimates of a and b respectively, at time 

t, and search for an adaptive law to generate ˆ( )a t and ˆ( )b t on-

line. 

Let ˆ( )a a t a= −�  and ˆ( )b b t b= −�  be the estimation errors. 

Now, the plant model (7) is expressed as: 
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Based in the tracking error ( ) ( ) ( )me t y t y t= − , from (17) 

and (7) we have: 
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Lemma 1: assume ( )f t ∈� is a continuous and derivable 
function. Then, for any time instant t≥t0 the following 
inequality holds [12, 17, 18]: 
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Stability proof. In order to analyze the closed-loop stability 
and to find the adaptive laws we consider the following 

measure for the error e(t), ( )a t� , and ( )b t� . 
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The positive real design parameters 
1 0ϕ >  and 

2 0ϕ > are 

often referred to as adaptive gains, as they can affect the speed 
of parameter adaptation. Taking fractional derivative of (22) 
with respect to time and using Lemma 1, we have: 
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Note that ˆ( )a a t= ��� and ˆ( )b b t=
��� . Based on the updated 

estimates of ˆ( )a t and ˆ( )b t , we can calculate the parameters: 
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From (22) and (24) we have: 

( ) 2q

mV a e≤  (25) 

This implies that ( , , )V e a b�� as a function of t does not 

increase, that ( )e t , ( )a t� , and ( )b t�  are bounded and so is u(t) 

in (18). Then, from (25), 2

0

( )e t dt
∞

< ∞∫ , and ( )
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qe t in (17), is 

2( )e t L∈ . Finally, by using the lemma of Barbalat’s given in 

[5, 15-17] we conclude that the system is Lyapunov stable and 
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the tracking error [ ]lim ( ) ( ) 0m
t

y t y t
→∞

− = converges 

asymptotically to zero. 

IV. NUMERICAL SIMULATIONS 

In this section, some numerical simulation studies are 
carried out to show the effectiveness of the proposed control 
scheme to the non-integer order system.  

Firstly, let us consider an unstable non integer order system 
defined by: 

( ) ( ) 2. ( )
q

tD y t y t u t= +
 
 (26) 

To build the adaptive controller we choose a model 
reference given by : 

( ) ( ) ( )
q

t m mD y t y t r t= − +   (27) 

where 0.98q = . 

The values of the parameters of adaptive gain were chosen 
as: φ1=20 and 

φ2=80. The control law necessitates the 
reference model, which has two design parameters am and bm. 
Both of them can be chosen without restraint, nevertheless it is 
worth to set am=1 and bm=1 to get a 0.78 gain of reference 
dynamics. The initial conditions of the system and reference 
model are y(0)=0 and ym(0)=0. The reference input signal r(t) is 
given by: 

( ) cos(2 )r t tπ=  (28) 

If the parameters of the system and reference model are 
known, the control law can be calculated as: 

* *

1 2( ) . ( ) . ( )u t y t r tψ ψ= +  (29) 

From (10) we obtain: 
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1
2m

a a

b
ψ

−
= = −  (30) 

and: 

*

2
1m

b

b
ψ = =  (31) 

The simulation results for this case are shown in Figures 2-
3, where we show the time responses of the plant state y(t) and 
the output of the reference model ym(t) and the control u(t). 

In the case where the system parameters are known, we can 
calculate the parameters of the controller directly, and from 
simulation the output of the system y(t) converges quickly to 
the output of the reference model ym(t). When the parameters of 

the system are unknown, a and b  are estimated by ˆ( )a t and 

ˆ( )b t  respectively. To determine the controller parameter gains 

1
( )tψ , 

2
( )tψ , (14) and (15) are used. The on-line estimate is 

generated by the adaptive law (24). The control law, based on 
the certainty equivalence principle, is given by (13). 

 

Fig. 2.  Comparison of the state plant signal with reference signal 

 
Fig. 3.  Control u(t) 

The initial conditions of the system and reference model are 

( ) 0 and ( ) 0
m

y t y t= = . We chose the same parameter values 

of the adaptive controller of the first case for this simulation, 
φ1=20 and φ2=80. The simulation results are shown in Figures 
4-8. The results show the time responses of the plant state and 
the state of the reference model, the follow up error, and the 
control. Figures 6 and 7 show that the estimated parameters a(t) 
and b(t) converge to the true values of the system. Figures 2-8 
indicate that the proposed method is quite efficient. The follow 
up error converges to zero and the control is bounded. The 
results are shown in Figure 4. It can be seen that e(t)→0 and 
y(t)→ym(t) as t→∞. The convergence rate can be increased by 
increasing the adaptation rates φi, i=1, 2, but a large value of φi 
can lead to an increase in the sensitivity of the control system 
to noise and unmodeled dynamics that can lead to instability. 

 

 
Fig. 4.  State plant signal with reference signal 

 
Fig. 5.  Estimate of a(t) 
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Fig. 6.  Control u(t) 

 
Fig. 7.  Estimate of b(t) 

 

Fig. 8.  Tracking error results by the proposed approach 

IV. CONCLUSION 

A systematic design procedure for the design of a non-
integer indirect adaptive controller for a class of non-integer 
systems has been presented in this paper and a new fractional 
indirect adaptive control scheme was presented based on a 
Lyapunov function. The proposed control strategy uses a 
MRAC configuration. It was shown that by using the proposed 
novel non integer adaptive controller it is possible to design a 
controller for the non-integer system. The effectiveness of the 
proposed scheme was confirmed by numerical simulations. 
These simulations were carried out in Matlab running in 
Windows 7. The step size was set to 0.001s, and the other 
settings were kept at default values. Simulation results verified 
the correctness of the developed theoretical approach. 
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