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Abstract—The unfavorable effects of non-uniform temperature 

inlet flow on gas turbine engine operations have always been a 

hindrance on the performance of turbo-fan engines. The 

propulsive efficiency is a function of the overall efficiency of 
turbofan engine which itself is dependent on other ambient 

parameters. Variation of inlet compressor temperature due to 

increase or decrease of aircraft altitude, air density, relative 

humidity, and geographical climate conditions affects the 

compressor performance. This research focuses on the turbofan 

transonic compressor performance due to ambient temperature 
distortion. A novel predictive approach based on neural network 

model has been implemented to predict the compressor 

performance and behavior at different ambient temperature 

conditions. The model produces substantially accurate results 

when compared to the results of CFD analysis. Computational 

results from CFD analysis show that engine thrust decreases at 
higher altitude, lower density and lower pressure regions. 

Keywords-transonic compressor; temperature distortion; CFD; 

artificial neural networks; deep learning  

I. INTRODUCTION  

Among the air breathing jet engines, turbofans are widely 
used in civil and military aircraft propulsion systems. In recent 
researches on the design and development of the transonic 
compressor rotor turbofan propulsive system, a continuous 
problem has been encountered in non-uniform inlet flow that 
triggers the performance of compression system on its stability. 
Gas turbines usually operate close to their limiting temperature 
where ambient temperature is very high. High ambient 
temperature deteriorates engine performance and stability. The 
primary concern of distorted inlet temperature is the ingestion 
of hot gasses from the environment. Compressor performance 
and stability deteriorated by inlet airfoil distortion, velocity 

distortion, reduced airflow, temperature and pressure 
circumferential distribution, while high ambient temperature, 
high absolute humidity, and low air density not only decrease 
compressor stall margin, but also increase fuel volatility [1-4]. 
If an engine is supercharged or turbocharged, then the variation 
of the air density does not affect the power output of the 
engine, until it reaches a certain altitude where even a 
turbocharged engine cannot compensate anymore for the loss 
of air density. The ideal ambient temperature at sea level does 
not always remain constant, as ambient temperature varies not 
only with altitude, but also with latitude. At high ambient 
temperature, air density decreases, reducing the air-fuel 
mixture for combustion and resulting in decrease of lift, thrust, 
and aerodynamic drag. High humidity causes engine icing 
which reduces compressor surge discharge pressure and flow 
capacity while it increases vibration and power consumption. 
In high bypass turbofan engines, super-cooled water droplets 
cause icing on engine inlet duct, the leading edge of fan blades, 
and IGV’s. Aircrafts always require higher takeoff speed at low 
air density to compensate for the lift force [5-8]. 

In the past, machine learning has gained importance in the 
field of turbo machinery. Various machine learning techniques 
have been used in this field to enhance and predict behavior 
and performance at different operating conditions. Deep 
learning has recently been used to predict the pressure 
distribution at turbine blade and three different deep neural 
networks were built and trained to predict the pressure 
distributions of turbine airfoils in [9]. In [10], authors studied 
the geometric optimization of an axial compressor blade by 
genetic algorithm, whereas, RANS analysis and Pareto-optimal 
design has been solved to obtain total pressure and adiabatic 
efficiency as objective functions and flow field inside the 
compressor annulus. Brain emotional learning based intelligent 
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controller has been studied to produce all-inclusive centrifugal 
compressor performance map incorporating speed lines that are 
not available in the provided curves. This technique is used to 
evaluate the constant and variable shaft speed, effects of load 
lines, and throttle valves for dynamic response of centrifugal 
compressor. To control compressor surge, a neuro fuzzy 
controlling scheme has been used in [11]. Recently, a gene 
expression programming to train CFD based machine learning 
neural network was developed for RANS turbulence model of 
high-pressure turbine blades. This explicit framework model 
could deduce wake prediction of the CFD based model [12].  

To the best of our knowledge there is no published work 
that relates the transonic axial compressor and artificial neural 
networks (ANNs) to predict the performance and behavior of 
the compressor at variable ambient temperature. This paper 
presents a study which uses ANNs to predict pressure ratio, 
temperature ratio, efficiency, and mass flow rate distribution of 
three-dimensional compressor rotors, as part of a larger project 
called “System Identification Development for Analysis of 
Transonic Axial Compressor Rotor 67”.  

II. METHODS 

Research is conducted on the first stage rotor of the two 
stage turbofan transonic compressor. Due to its high mass flow 
rate at designed pressure ratio, it is widely researched in 
aerospace industry. Initially, computational analysis is 
conducted on an ISA model which is considered at sea level at 
288.15K ambient temperature and 1atm pressure, as it is used 
for engine performance comparison with extreme ambient 
temperature conditions. Further calculations are done at 
completely dry air where there is no considerable humidity 
change. Due to considerable diversity of ambient temperatures 
at high or low altitude and seasonal effects, very cold, moderate 
and extreme hot ambient temperature have also been 
considered. Inlet temperature of the compressor varied as per 
the change in ambient temperature; therefore, it changes the air 
density according to the Sutherland constant. The adopted 
pressure changes were kept the same as for the standard 
atmosphere. For the ANN model, the dataset is comprised of 
the computational parameters required in CFD analysis. 
Temperature values (223K-330K) and ambient pressure values 
(1.0atm-1.23atm) constitute the input features of the ANN 
model. Table I shows the dataset division and the number of 
samples for each category. 

TABLE I. DATASET DIVISION 

Data set Dataset division Total samples 

Training data 90% 360 

Test data 10% 42 

 

The aim is to perform prediction based on the input feature 
set. Thus, prediction analysis provokes the network to use 
mean square error (MSE) as an evaluation metric [13]. For the 
training of the ANN, the iterative minimization of cost function 
is utilized. During the training phase, ADAM optimizer has 
been used to update the weights and biases of the network. The 
weights are initialized from a random normal distribution. The 
initial learning rate value is set to 0.01 and �� and �� values are 
set to 0.9 and 0.999 respectively [14]. For generalization 

purposes, the training data are randomly shuffled and 
standardized to zero mean and unit variance. The network has 
been trained for 100 epochs. Keras has been opted as a 
framework for implementing the neural network architecture. 
The chosen library is a popular framework for rapid 
prototyping and developing high-level modularity of ANNs. 
Table II shows the network architecture and hyper parameters. 

TABLE II. NETWORK ARCHITECTURE AND HYPER PARAMETERS 

Network design Model 

Hidden Layers 2 

Learning rate 0.01 

Batch size 16 

Hidden layers non-linearity ReLU 

Drop out 0 
 

III. COMPUTATIONAL SETUP 

Transonic compressor NASA rotor 67 is composed of 22 
blades and at leading and trailing edges. It has 25.7cm and 
24.25cm tip radii respectively as shown in Figure 1. Three 
dimensional steady compressible Navier-Stoke equation is 
solved using the � � � turbulence model. At the boundaries of 
rotor computational domain, three coefficients for ideal gas 
standard boundary conditions are applied. Furthermore, no slip 
conditions were used on walls whereas periodic conditions 
were applied at the periodic surfaces. For grid independence 
study, 3D mesh at coarse, medium, fine, and super fine state is 
generated. For grid analysis, computations are carried out to 0.4 
million to 1.6 million mesh nodes. Figure 2 shows the fine 
hexahedral-grid mesh with 0.96 million mesh elements which 
has decent justification between computational and NASA 
experimental results. 

 

 
Fig. 1.  Transonic rotor geometry 

 

 
Fig. 2.  Fine mesh of rotor 67 
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IV. RETSULTS AND DISCUSSION 

A. Computational Validation 

Computations were carried out from choking to near stall 
conditions by gradually raising the outlet average static 
pressure to obtain compressor rotor characteristic graph at sea 
level. The near stall point is predicted at the last stable 
condition of the rotor 67. Figure 3 shows the characteristic map 
of compressor at designed 16043rpm and at tip clearance 
1.016mm that illustrates good validation between 
computational and NASA experimental results at sea level. 
Computational results show 33.14kg/s mass flow rate at the 
designed condition of 0.3% difference from NASA 
experimental results, which is fairly encouraging. 

 

 
Fig. 3.  Characteristic map at sea level 

B. Results at Sea Level Condition 

Figure 4 shows static temperature contours, Mach number 
contours, pressure and density contours at suction and pressure 
side of the blade at designed tip clearance of 1.016mm and 
16043RPM at sea level condition where Tin is 288.15K, near 
stall point. The following conclusions have been drawn: 

• Temperature gradually starts increasing at the mid of the 
span to tip region. Temperature contours show almost the 
same behavior at the suction side of the blade where there is 
a high temperature region above 90% span of the rotor 
blade. 

• Mach number remains subsonic near the hub of the blade. 
Flow becomes transonic at nearly 50% of the blade span, 
and at 90% of the blade span it becomes nearly supersonic 
at the leading edge (LE) of the suction side. The flow 
behavior at pressure side is almost similar to the suction 
side of the blade.  

• Pressure gradually rises from hub to shroud as there is a 
low pressure region near the hub of the blade and a very 
high-pressure region that is above 80% of the span on the 
pressure side of the blade. 

• There is a low density region at the LE of the suction side 
of the blade and a high density region at the LE of the 
pressure side of the blade. 

C. Results at Very Low Ambient Temperature 

Figures 5-7 show density, pressure and Mach number 
contours at suction and pressure side of the blade at near stall 
point side during very low ambient temperatures. 

 
Fig. 4.  Blade suction and pressure side flow contours at sea level 

 

 
Fig. 5.  Density contours at very low ambient temperatures 
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Fig. 6.  Very low ampient temperature pressure contours 

 

 

Fig. 7.  Very low ampient temperature Mach contours 

The following computational trends have been observed: 

• Air becomes very dense at extremely low ambient 
temperatures. Denser air is quite dominant at the blade 
pressure side.  

• There are high pressure contours at very low ambient 
temperatures. The pressure region near the hub is almost 
similar to the sea level, but it is higher at lower 
temperatures near the tip region.  

• There are high Mach numbers at the blade suction and 
pressure side near the tip region at low ambient 
temperatures. Furthermore, stronger oblique shock is 
observed near the tip region which starts decreasing as 
temperature increases. 

D. Results at Moderate Ambient Temperature 

In comparison with compressor rotor behaviour at sea level, 
the following computational trends have been seen at blade 
suction and pressure side of 8-moderate ambient temperatures. 
Figures 8-10 show density, pressure and Mach number 
contours at moderate ambient temperatures. 

 

 
Fig. 8.  Density contours at moderate ampient temperature 

• Air density starts decreasing as temperature increases. The 
density at LE of the blade pressure side is slightly higher 
than the pressure of the suction side.  

• Pressure region has similar behavior at sea level near the 
hub to 50% span of the blade. It is slightly greater at 
ambient temperature lesser than the sea level one and it 
decreases as temperature increases. 

• There are weak oblique shock waves near the LE of the 
blade suction side as temperature increases. 
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Fig. 9.  Pressure contours at moderate ampient temperature 

 

 
Fig. 10.  Mach contours at moderate ampient temperature 

E. Results at Very High Ambient Temperature 

In comparison with compressor rotor behavior at sea level, 
the following computational trends have been seen at the blade 
suction and the pressure side of high ambient temperatures 
(Figures 11-13). 

 

 
Fig. 11.  Density contours at extreme temperature 

• There are weak density regions at the blade suction side 
which further weaken as temperature increases. 

• At higher ambient temperatures the air pressure decreases 
as air density also decreases which deteriorates the 
compressor performance and stability.  

• Results show marginal oblique shock waves near the LE of 
blade suction side as temperature increases. 

• There are weak density regions at the blade suction side 
which further weaken as temperature increases. 

• At higher ambient temperatures the air pressure decreases 
as air density also decreases which deteriorates the 
compressor performance and stability.  

• Results show marginal oblique shock waves near the LE of 
blade suction side as temperature increases. 

F. Effect of Ambient Temperature on Blade Loading 

Quantitative comparison of pressure variation on a single 
blade at 80% of its total span near stall condition at extremely 
low, moderate, and high ambient temperatures is shown in 
Figure 14.  
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Fig. 12.  Pressure contours at extreme temperature 

 
Fig. 13.  Mach contours at extreme temperature 

 
Fig. 14.  Blade loading at 80% span 

Blade loading is an important factor that occurs due to 
decrease in static pressure of incoming fluid at pressure and 
suction side of blade. The upper portion in the blade loading 
shows the pressure side and the lower portion represents the 
suction side of the blade. Results show almost similar trends of 
temperatures at the suction surface of blade loading. At very 
low ambient temperature, the loading at pressure surface is 
greater, decreasing by increasing ambient temperature. Figure 
15 shows the Mach number contours on a single blade at 
extremely low, moderate, and high ambient temperatures. 
Results show high Mach number along the normalized span 
wise at very low ambient temperature. Mach number slightly 
decreases at higher ambient temperature.  

 

 
Fig. 15.  Relative Mach number span wise at LE 

Figure 16 shows the velocity vectors at 80% span of the 
rotor blade near stall condition at extremely low, moderate, and 
high ambient temperatures. The Figure shows high visible 
oblique shock waves at LE of suction side of the blade, 
whereas, oblique shock travels from the suction side of the first 
blade to the LE of the adjacent blade which results in flow 
blockage. Results show that at very low ambient temperature, 
the oblique shock is quite stronger at the suction side of the 
blade LE, and it becomes weaker at higher ambient 
temperatures. Figure 17 shows the ambient temperature vs 
altitude in troposphere region. Figure 18 shows the indirect 
relation of static pressure with altitude. It reveals that static 
pressure decreases at higher altitude. Figure 19 shows the 
variation of density with altitude. 
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Fig. 16.  Velocity vector at 80% span 

 

 
Fig. 17.  Altitutude vs ambient temperature 

 

 
Fig. 18.  Altitutude vs static temperature 

 

 
Fig. 19.  Altitude vs air density 

G. Compressor Characteristic Map 

Figures 20-21 show the characteristic maps of compressor 
mass flow rate with pressure ratio, and temperature ratio 
respectively, to evaluate the performance of transonic 
compressor at different ambient temperatures, i.e. above and 
below sea level, whereas, Figure 22 shows the decrease of 
maximum mass flow rate as the ambient temperature increases. 
Results show that maximum mass flow rate, pressure ratio, and 
temperature ratio decrease at higher ambient temperature, 
which deteriorates the compressor stability range and 
performance in troposphere region ranges from sea level to 
above 10km at steady RPM. 

 

 
Fig. 20.  Characteristic map (mass flow rate vs pressure ratio) 

 

 
Fig. 21.  Characteristic map (mass flow rate vs temperature ratio) 

 

 
Fig. 22.  Mass flow rate vs temperature 
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H. Neural Network Loss and Data Visualization 

Table III shows the mean square error (MSE) value during 
train and test phase. The values signify the generalization of the 
trained model on the test dataset, as the value is quite close to 
the train data MSE value. Figure 23 shows the MSE loss 
function of the model during train and test phase. The result 
shows that the loss function settles down during an early phase 
of training.  

TABLE III. MSE VALUE AT TRAIN  TEST PHASE 

Dataset division MSE value 

Train 0.045 

Test 0.052 

 

 
Fig. 23.  Loss function during train and test phase 

Figures 24-27 show the test data unity plots of mass flow 
rate, pressure ratio, temperature ratio and efficiency. The x-axis 
corresponds to target values of the test dataset while the y-axis 
shows the predicted values that have been obtained when the 
trained model was tested with the test data set. The unity plot 
elaborates the performance of the network when the trained 
model is passed through an unseen test dataset. The difference 
between the predicted values (test dataset values) obtained 
from the trained model and the target values should be as small 
as possible. This results in the set of points that should ideally 
lie on the unity line.  

 
Fig. 24.  Unity plot of test data mass flow rate values 

 
Fig. 25.  Unity plot of test data pressure ratio values 

 
Fig. 26.  Unity plot of test data temperature ratio values 

 
Fig. 27.  Unity plot of test data efficiency values 

V. CONCLUSION 

The effects of total temperature inlet distortions on the 
performance of an axial compressor rotor blade row were 
studied using computational fluid dynamic and deep learning 
techniques. In transonic compressor, besides high altitude, 
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humidity, low air pressure and density, ambient temperature 
also play a vital role in its performance. Under the influence of 
extremely high inlet compressor temperature, the engine may 
shutdown due to compressor instability. The results show that 
compressor rotor mass flow rate, efficiency, pressure ratio, and 
temperature ratio have been significantly reduced when the 
ambient temperature increased excessively. Very low ambient 
temperature and denser air produce higher mass flow rate, 
pressure ratio, and greater compressor efficiency. On the other 
hand, the results obtained from the ANN show that despite of 
using the conventional method of predicting parameters 
through CFD analysis, the use of ANNs is a promising 
approach to predict the parameters of compressor rotor blade. 
The results visualized through unity plots are a clear indication 
that given any set of temperature and pressure values, the 
trained model can accurately generate predictions of mass flow 
rate, temperature ratio, pressure ratio, and efficiency in less 
computational time as compared to simulating the models 
through CFD analysis. 
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