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Abstract—Analysis of rectangular plates on a rising elastic 

foundation is common when designing the foundation of civil, 

traffic, and irrigation works. The current research presents the 

results of the analysis of rectangular plates on rising Winkler 

elastic and two-parameter foundation using the finite difference 

method. The computational programming was done on Matlab. 

The results of the research verify the accuracy of the FEM and 

are in agreement with findings in the literature. In addition, this 

research also compares the calculation results of two foundation 
models and investigates the change of plate height ratio to plate 

size. 
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I. INTRODUCTION  

A plate on a rising elastic foundation is a common type of 
structure when designing the foundation of civil works. 
Analysis of this problem is related to the solution of the 
differential equations that describe it. Finding a simple 
calculation method that still yields accurate results is the topic 
of this research. The combination of Kirchhoff's classic plate 
theory with Finite Difference Method (FDM) has been the 
topic of many studies. Authors in [1] proposed the application 
of FDM to study of the phenomenon in the theory of thin 
plates. Authors in [2] analyzed rectangular thin plates by using 
FDM. In [3] FDM was proposed to analyze a rectangular steel 
plate. The plate was considered to be subjected to an arbitrary 
transverse uniformly distributed loading and was considered to 
be clamped on two opposite edges and free at the other two 
edges. Authors in [4] presented an investigation of the validity 
of FDM on simulations of a thin sectorial steel plate under the 
effect of uniform and concentrated loads with different types of 
boundary conditions. Authors in [5] analyzed the rectangular 
Kirchhoff plate on Winkler foundation using Finite Fourier sine 
transform. The plate was assumed homogeneous, isotropic, and 
simply supported at the four edges. Analysis of plate on a rising 
elastic foundation is an also interesting topic. Authors in [6] 
proposed simple computer analysis of circular rafts under 
varying axisymmetric loading and elastic foundation conditions 
and authors in [7] analyzed the circular tank foundations with 

FDM. In [8], authors used finite element approach to study 
elastic soil-structure interaction. Finite and infinite dynamic 
plate-soil interaction, flexible and rigid plates on homogeneous, 
layered or Winkler soil were studied in [9]. Finite/infinite 
element analysis of a thick plate on a layered foundation was 
proposed in [10]. One can conclude that the research on the 
analysis of rectangular plates on resting Winkler and two-
parameter elastic foundation models by using FDM is still 
limited. Therefore, this study aims at analyzing rectangular 
plates on resting Winkler and two-parameter elastic foundation 
models by FDM. The Matlab program combines the 
Kirchhoff’s classic plate theory, Winkler foundation model, 
two-parameter foundation model, and FDM. In addition, this 
research also compares the calculation results of the two 
foundation models and investigates the change of plate height 
ratio to plate size.  

II. THEORETICAL FRAMEWORK 

A. Finite Diffrence Method 

FDM is a popular numerical method due to its 
straightforward approach and minimum requirements regarding 
computer resources. It is based on a mathematical 
discretization of the equations of boundary problems. The 
contents of the method are to replace the derivative by a finite 
estimation. This method is sufficiently accurate for thin plate 
analysis [11, 12].  

B. Elastic Foundation Models 

The elastic foundation is modeled by a one-, two- or many-
dimensional elastic spring. Several mathematical descriptions 
of the elastic foundation are proposed in [12, 13]. In this 
research, the Winkler model and the two-parameter elastic 
foundation will be presented and used. 

1) Winkler Foundation Model 

Winkler foundation model was proposed in [14]. It is based 
on the assumption that the foundation’s reaction q(x, y) at any 
point (x, y) on the plate is directly proportional to the 
displacement w(x, y) at the point, and the proportionality 
constant k, called Winkler modulus, is a constant for the entire 

Corresponding author: Trong Ha Nguyen



Engineering, Technology & Applied Science Research Vol. 9, No. 4, 2019, 4490-4494 4491  
  

www.etasr.com Nguyen: Analysis of Rectangular Plates on Resting Winkler and Two-Parameter Elastic Foundation … 

 

foundation (or the foundation modulus) as shown in (1): 

( ) ( ), ,q x y kw x y=     (1) 

2) Two-Parameter Elastic Foundation Model 

Two-parameter elastic foundation model was proposed in 
[5, 15]. The foundation reaction is shown in the following 
expression: 

( ) ( ) ( )2, , ,q x y kw x y T w x y= − ∇   (2) 

where k and T are the foundation model parameters. 

Equation (2) can be rewritten for rectangular or circular 
foundations: 

( ) ( )
( )2

2

,
, ,

d w x y
q x y kw x y T

dx
= −   (3) 

Equation (2) can be rewritten for the Hetenyi foundation as 
[5]:  

( ) ( ) ( )4
, , ,q x y kw x y D w x y= − ∇   (4) 

where 
( )

3

2
12 1

p p

p

E h
D

µ
=

−
 is the flexural rigidity of the elastic 

plate and k is Winkler modulus. k  and D are the model 
parameters. Ep and µp are the Young’s modulus and Poisson’s 
ratio of the plate material, and hp is the plate thickness. 

Equation (2) can be rewritten for the Pasternak foundation 
as [15]: 

( ) ( ) ( )2
, , ,q x y kw x y G w x y= − ∇   (5) 

where,G is the shear modulus of the shear layer. k and D are 
the Pasternak foundation model parameters.  

Equation (2) can be rewritten in two-parameter Pasternak 
foundation form as: 

( ) ( ) ( )2
, , ,sq x y kw x y k w x y= − ∇   (6) 

where k is the first elastic foundation parameter (Winkler 
modulus) and ks is the second elastic foundation parameter. 

C. Classical Thin Plate Theory (Kirchhoff) 

Analysis of a thin plate subjected to loads acting normal to 
its surface requires solution of differential equations of three-
dimensional elasticity. Authors in [17] proposed the exact 
bending analysis for thin plates. However, this method is 
somewhat complex and time-consuming. To overcome the 
above disadvantages in technical applications, Kirchhoff’s 
classical theory of thin plates yields sufficiently accurate results 
without the need of carrying out full three-dimensional stress 
analysis. The governing differential equation for deflection of 
thin plates by Kirchhoff’s theory is [18]: 

( ) ( )4
,

,
zp x y

w x y
D

∇ =     (7) 

where w denotes the deflection in z direction due to the load 
zp  

on surface x-y. D is the flexural rigidity of the elastic plate 

expressed as: 
( )

3

212 1

Eh
D

µ
=

−
. In this expression: E is the 

modulus of elasticity of the plate material, h is the thickness of 
plates, µ is Poisson’s ratio for the plate material. Equation (7) is 
solvable by using FDM. 

III. METHODOLOGY 

A. Rectangular Kirchhoff plate on Winkler Foundation Model 

Consider a rectangular plate a×b resting on a Winkler 
foundation model as shown in Figure 1. The governing 
equation is: 

( ) ( ) ( )4
,

, ,
z

p x yk
w x y w x y

D D
∇ + =   (8) 

For 0 ,   0x a y b≤ ≤ ≤ ≤ , where k is the Winkler modulus, 

( ),w x y is the deflection of the plate middle surface, ( ),q x y  is 

the external distributed load applied to the plate,  and a b  are 
the length and width of the plates. 

 
Fig. 1.  Rectangular plate resting on a Winkler foundation 

B. Rectangular Kirchhoff Plate on Two-Parameter 

Foundation Model 

Consider a rectangular plate a×b resting on a two-
parameter foundation (Pasternak foundation) as shown in 
Figure 2. 

 
Fig. 2.  Rectangular plate resting on two-parameter (Pasternak foundation) 

The governing equation can be expressed by: 

( ) ( ) ( ) ( )4 2
,
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z

s

p x y
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D
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For 0 ,   0x a y b≤ ≤ ≤ ≤ , where k  is the Winkler 
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modulus, ( ),w x y is the deflection of the plate middle surface, 

( ),zp x y  is the external distributed load applied to the plate, 

and  and a b are the length and width of the plate. 

C. Flowchart 

The steps taken on the analysis of a rectangular Kirchhoff 
plate on an elastic foundation are: 

• Assume displacement and make finite difference grid. 

• Replace the corresponding partial differential equations (8)-
(9) of the problem at the same transform with the finite 
difference equation or difference equation. 

• Establish algebraic equations with the displacements as 
variables 

• Solve the system of equations to determine the 
displacement. 

• Determine stress and deformation from displacement by 
differential method. 

Figure 3 shows the respective flowchart. 

 

Fig. 3.  Flowchart of the analysis of rectangular Kirchhoff’ plates on an 
elastic foundation 

IV. NUMERICAL RESULTS 

A. Validation of Sample Plates on Matlab 

The flowchart of the program is shown in Figure 3. In order 
to validate this program, square plates of a/b=1 and plate 
thickness h=1/100(cm) were considered. Differential mesh 
division in two cases ∆x=∆y=a/4(cm) and ∆x=∆y=a/8(cm) was 
considered. Uniformly distributed load was p=−100kN/m2and 
Young’ modulus was E=2.1×105MPa, while Poisson’s ratio of 
the plate material was µ=0.3. Non-dimensional deflections and 
stresses, defined in [18] are: 

( )
3

4
0,0

Eh
w w

a p

 
=  

 
, 

2

2
, ,
2 2 2

xx xx

a b h h

a p
σ σ

  =   
  

  

and 
2

2
, ,
2 2 2

yy yy

a b h h

a p
σ σ

  =   
  

. 

The generation of nodes in the two studied cases is shown 
in Figures 4 and 5. 

 
Fig. 4.  Experimental plate with unknown nodes displacement (case 4x4) 

 
Fig. 5.  Experimental plate with unknown nodes displacement (case 8x8) 

The obtained results are compared in Table I. The small 
errors in Table 1 confirm the reliability of our program. 

TABLE I.  NON-DIMENSIONAL DEFLECTIONS AND STRESSES OF 
VALIDATION SAMPLE  

Models 

Non-dimensional 

deflections 
Non-dimensional stresses 

w  xx
σ  yyσ  

Case study (4x4) 0.0440 0.2813 0.2813 

Case study (8x8) 0.0443 0.2839 0.2839 

[18] 0.0444 0.2873 0.2873 

FEM (Sap2000) 0.0443 0.2839 0.2839 
 

The difference between the results does not exceed 0.5% , 
while the case studies (8x8), [9] and FEM give equivalent 
results. This means that the research using FDM gives reliable 
and simple calculations. 

B. FDM Analysis of Rectangular Plates on Elastic 
Foundation Models 

The obtained results of non-dimensional deflections and 
stresses of the analysis of rectangular plates on rising Winkler 
and two-parameter elastic foundation models are shown in 
Tables II-III and Figures 6-7. We can see that the deflection of 
the plate changes when the elastic modulus increases. The rate 
of change of the non-dimensional deflection of the Winkler 

foundation model is about 5%  of the two parameter 
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foundation model. On the other hand, the variable dimension of 
the non-dimension variation of the two models is equivalent. 
The non-dimension stress of the two foundation models has 
also the same change. 

TABLE II.  NON-DIMENSIONAL DEFLECTIONS AND STRESSES ON 
RISING WINKLER FOUNDATION MODEL BY FDM 

k  

Non dimensional 

deflections 
Non dimensional stresses 

w  xxσ  yyσ  

0 0.0443 0.2839 0.2839 

1000 0.0431 0.2755 0.2755 

2000 0.0419 0.2675 0.2675 

3000 0.0408 0.2600 0.2600 

4000 0.0398 0.2528 0.2528 

5000 0.0388 0.2460 0.2460 

TABLE III.  NON-DIMENSIONAL DEFLECTIONS AND STRESSES ON 
RISING TWO-PARAMETER FOUNDATION MODEL BY FDM 

k  sk  

Non dimensional 

deflections 

Non dimensional 

stresses 

w  xxσ  yyσ  

1000 0 0.0431 0.2755 0.2755 

1000 1000 0.0409 0.2617 0.2617 

2000 2000 0.0398 0.2541 0.2541 

3000 3000 0.0387 0.2470 0.2470 

4000 4000 0.0378 0.2402 0.2402 

5000 5000 0.0368 0.2337 0.2337 

 

 
Fig. 6.  Non-dimensional deflections on rising Winkler foundation 

 

Fig. 7.  Non-dimensional deflections on rising two-parameter foundation 

C. Effect of a/b to Non-Dimensional Deflections and Stresses  

The obtained results for rectangular plates on rising 
Winkler foundation with a/b=[1.0 1.5 2.0 2.5 3.0], plate 
thickness h=a/100(cm), differential mesh division ∆x=a/8(cm) 
and ∆y=b/8(cm), uniformly distributed load p=-100KN/m

2, 
Young’s modulus E=2.1×10

5
MPa, Poisson’s ratio µ=0.3 and 

Winkler modulus k=ks=1000, are shown in Table IV.  

TABLE IV.  NON-DIMENSIONAL DEFLECTIONS AND STRESSES 

a/b 
Non-dimensional deflections Non-dimensional stresses 

w  xxσ  yyσ  

1.0 0.0422 0.2696 0.2696 

1.5 0.0162 0.1313 0.1869 

2.0 0.0068 0.0663 0.1144 

2.5 0.0032 0.0351 0.0670 

3.0 0.0016 0.0194 0.0387 

 

(a) 

 

(b) 

 

Fig. 8.  Effect of the a/b of variability on (a) non-dimensional deflections, 

and (b) non-dimensional stresses 

In Table IV and Figure 8, we can see that the effect of a/b 
to the non-dimensional deflections and stresses is significant. 
The variability of non-dimensional deflections is [0.0422 ÷
0.0016], of non-dimensional stresses 

xxσ  is [0.2696 ÷ 0.0194] 
and has a larger fluctuation range 

yyσ  of [0.2696 ÷ 0.0194]. 
These obtained results confirm that the research is consistent 
with previous researches’ results on the problem of plates on 
rising elastic foundation. 
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D. Effect of the a/h to Non-Dimensional Deflections and 

Stresses 

Consider rectangular plates on rising Winkler Foundation 
with input parameter a/b=1 and plate thickness a/h=[50 100 
150 200 250], differential mesh division ∆x=∆y=∆=a/8cm, 
uniformly distributed load, p=-100KN/m

2
, Young’ modulus 

E=2.1×10
5
MPa, Poisson’s ratio of the plate material µ=0.3 and 

Winkler modulus k=ks=1000. The obtained results are shown in 
Table V and Figure 9. 

TABLE V.  NON-DIMENSIONAL DEFLECTIONS AND STRESSES 

a/h 
Non dimensional deflections Non dimensional stresses 

w  xxσ  yy
σ  

50 0.0441 0.2828 0.2828 

100 0.0431 0.2755 0.2755 

150 0.0404 0.2573 0.2573 

200 0.0361 0.2274 0.2274 

250 0.0307 0.1899 0.1899 

 

(a) 

 

(b) 

 

Fig. 9.  Effect of the a/h variability on (a) non-dimensional deflections, 

and (b) non-dimensional stresses 

In Table V and Figure 9 we can see that the effect of a/h
 
to 

non-dimensional deflections and stresses is influential but not 
great. The variability of non-dimensional deflections is [0.0441

÷ 0.0307] and of non-dimensional stresses  and xx yyσ σ  is 

[0.2755 ÷ 0.1899]. 

V. CONCLUSION 

This paper studied the analysis of rectangular plates on 
resting Winkler and two-parameter elastic foundation models 

by using the Finite Difference Method. Authors utilized 
classical plate theory, Winkler and two-parameter elastic 
foundations, and FDM. Parametric tests were performed to 
study the effects of input parameters on the non-dimensional 
deflections and stresses. The obtained results showed the 
validity of this approach.  
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