
ETASR - Engineering, Technology & Applied Science Research Vol. 2, �o. 1, 2012, 167-172 167

www.etasr.com Zjavka: Recognition of Generalized Patterns by a Differential Polynomial �eural �etwork

Recognition of Generalized Patterns by a Differential
Polynomial Neural Network

Ladislav Zjavka
Faculty of Management Science and Informatics

University of Žilina
Žilina, Slovakia

lzjavka@gmail.com

Abstract — A lot of problems involve unknown data relations,

identification of which can serve as a generalization of their

qualities. Relative values of variables are applied in this case, and

not the absolute values, which can better make use of data

properties in a wide range of the validity. This resembles more to

the functionality of the brain, which seems to generalize relations

of variables too, than a common pattern classification.

Differential polynomial neural network is a new type of neural

network designed by the author, which constructs and

approximates an unknown differential equation of dependent

variables using special type of root multi-parametric

polynomials. It creates fractional partial differential terms,

describing mutual derivative changes of some variables, likewise

the differential equation does. Particular polynomials catch

relations of given combinations of input variables. This type of

identification is not based on a whole-pattern similarity, but only

to the learned hidden generalized relations of variables.

Keywords - polynomial neural network; dependence of

variables identification; differential equation approximation;

rational integral function

I. INTRODUCTION

The principal disadvantage of the artificial neural network
(ANN) identification in general is the disability of input pattern
generalization. ANNs can learn to classify any input patterns
but utilize only the absolute values of variables. However, the
latter may differ significantly while their relations may be the
same. That is why ANNs are able to correctly recognize only
similar or incomplete patterns compared to the train set. If the
input considered is e.g. a shape moved or sized in the input
matrix, the neural network identification will fail. An approach
to look at the input vector of variables not as a “pattern” but as
a dependent bound point set of N-dimensional space could be
attempted. A neural network, which would be able to learn and
identify any unknown data relations, is to contain a multi-
parametric polynomial functions to catch partial dependence of
given inputs. Its response would be the same to all patterns
(sets) which variables are performed with the trained
dependence, regardless of the actual values [9]. Biological
neural cell seems to apply a similar principle. Its dendrites
collect electrical signals coming from other neurons. But unlike
the artificial neuron, some of the signals already interact in
single branches (dendrites) of a neural cell (see Figure 1),

likewise the multiplied variables of a multi-parametric
polynomial do.

Parameters of polynomial terms can represent the synopsis
of the cell dendrites. These weighted combinations are summed
in the body cell and transformed into relative values using
time-delayed dynamic periodic activation functions (the
activated neural cell generates series of time-delayed output
pulses, in response to its input signals). Axon passes electrical
pulse signals on to dendrites of other neural or effector cells
[1]. The period of this function depends on some input
variables and seems to represent the derivative part of a partial
term of a differential equation composition. Differential
polynomial neural network (D-PNN) constructs and tries to
approximate an unknown differential equation describing
relations of input variables that are not entirely patterns. It
forms its output as a generalization of input patterns similar to
the ones utilized by the human brain. It creates a structural
model of any unknown relationships of input variables
description. D-PNN is based on GMDH (Group Method of
Data Handling) polynomial neural network, which was created
by the Ukrainian scientist Aleksey Ivakhnenko in 1968, when
the back-propagation technique was not known yet. He
attempted to decompose the complexity of a process into many
simpler relationships each described by a low order 2-variable
polynomial processing function of a single neuron [2].

Fig. 1. A biological neural cell

ETASR - Engineering, Technology & Applied Science Research Vol. 2, �o. 1, 2012, 167-172 168

www.etasr.com Zjavka: Recognition of Generalized Patterns by a Differential Polynomial �eural �etwork

II. DIFFERENTIAL POLYNOMIAL NEURAL NETWORK

The basic idea of the D-PNN is to create and approximate a
differential equation (DE) (3), which is not known in advance
[3], with a special type of root (power) fractional multi-
parametric polynomials (5).

∑∑∑∑
∞

====

==+
∂∂

∂
+

∂
∂

+
11

2

11

0...
k

k

n

j ji

ij

n

i

n

i i

i uu
xx

u
c

x

u
ba (3)

u(x1, x2,, … , xn) - searched function of all input variables

a, B(b1, b2,, ..., bn), C(c11, c12, ,...) - parameters

 Fourier’s method of partial DE solution searches the
solution in a form of the product of 2 functions, of which at
least 1 depends only on 1 variable. A partial derivation of
function z(x, y) of 2 input variables x, y can be expressed by
(4) [4].

)()(
),(

21 zfxf
x

yxz
⋅=

∂

∂ (4)

 Elementary methods of a differential equation solution
express the solution in special elementary functions –
polynomials (e.g. Bessel’s functions, Fourier’s power series).
Numerical integration of differential equations is based on
their approximation through:

• rational integral functions
• trigonometric series

 The 1st, and more simple way, has been selected, using
the method of integral analogues, which replaces mathematical
operators and symbols in DE by the ratio of corresponding
variables. Derivatives are replaced by the integral analogues,
i.e. derivative operators are removed and simultaneously all
operators are replaced by similarly or proportion marks in
equations, all vectors are replaced by their absolute values.
Dimensional terms are divided by some others, which results in
searched non-dimensional likeness criterions [5].

()
() m

n

m

m

n
nnn

i
xxx

xxxf

xbb

xxaxaxaxaa
y

∂∂∂

∂
=

++

++++++
= +

...

),...,,(

...

......

21

21

1

110

1

21122110
 (5)

n – combination degree of n-input variable polynomial of numerator
m – combination degree of denominator (m<n)

0...
......

.........
..

...

......

110

0

110

210
10 =+

++++

+++++
++

++
+++

+=
vur

kjiqjip

t
k

xxbxbb

xxxaxxaa
w

xbb

xxaa
wwY

(6)

 wt – weights of terms

 The fractional polynomials (5), which can describe a partial
dependence of n-input variables of each neuron, are applied as
terms of the DE (6) composition. They partly create an
unknown multi-parametric non-linear function, which codes
relations of input variables. The numerator of (5) is a
polynomial of complete n-input combination degree of a single
neuron and realizes a new function z of formula (4). The
denominator of (5) is a derivative part, which gives a partial
mutual change of some neuron input variables and its
polynomial combination degree m is less then n. It arose from
the partial derivation of the complete n-variable polynomial by
competent variable(s).

Fig. 2. A block of differential neurons

 Each layer of the D-PNN consists of blocks, which contain
derivative neurons, one for each fractional polynomial (5),
defining the partial derivative dependent change of some input
variables. A block also contains additional extended neurons
(EN), which form compound functions (15) applying previous
layer block outputs. Each block contains a single polynomial
(without derivative part), which forms its output entrance into
the next hidden layer (Figure 2.). Neurons don’t affect the
block output but are applied only for the total output
calculation (DE composition). Each neuron has 2 vectors of
adjustable parameters a, b and each block contains 1 vector of
adjustable parameters of the output polynomial. The root
functions of denominators (5) are lower than n, according to
the combination degree, which take the polynomials of neurons
into competent power degree. They can be replaced by power
functions of denominators. Inputs of constant combination
degree (n=2,3,…) forming particular combinations of variables,
enter each block, where they are substituted into polynomials
(Figure 3.). It is necessary to adjust not only the polynomial
parameters, but also the D-PNN‘s structure. This means some
neurons in terms of role of the DE are to be left out.

Fig. 3. Differential polynomial neural network

x1 x2 x3

Block output

polynomial

� neurons (5)

Combination
degree n=3

Extended

neurons

 / /

Π

ETASR - Engineering, Technology & Applied Science Research Vol. 2, �o. 1, 2012, 167-172 169

www.etasr.com Zjavka: Recognition of Generalized Patterns by a Differential Polynomial �eural �etwork

III. IDENTIFICATION OF SIMPLE LINEAR DEPENDENCIES

Consider a very simple dependence of 2-input variables,
which multiplicity is constant (e.g. =2). D-PNN will contain
only 1 block of 2 polynomial neurons (7)(8) as terms of DE
(Figure 4.). As the input variables don’t change constantly, it is
necessary to add both terms (fractional polynomial of
derivative variable x1 and x2) in the DE (block). D-PNN will
learn this relation easily according to samples of the training
data set by means of genetic and evolution algorithm (GA) [7].

()
110

2
1

21322110
11

xbb

xxaxaxaa
wy

+
+++

= (7)

()
210

2
1

21322110
22

xbb

xxaxaxaa
wy

+

+++
= (8)

Consider a more complicated linear dependence, where 2

variables depend on a 3rd. For example sum of the first 2
variables equals the 3rd variable (x1 + x2 = x3). The complete
DE (for derivatives 1 and 2-combinations of block) consists of
6 terms (neurons) but only 3 of them will be enough for
derivative terms x3 (9), x1x3 (10), x2x3 (11). If other terms
(neurons) are added, the D-PNN will work amiss (see Figure
5). Two-variable combination polynomials of numerators
(7)(8) can be also applied, which could improve the D-PNN
functionality and increase the number of the DE terms. This 3-
variable dependence is described by more complicated
exponential functions. The D-PNN as well is charged by the
possible 2-sided dependent change of input variables. For
example 1+9=10 is the same sum as 9+1=10. The principal
phase of its adjustment resides in eliminating of some neurons
(in terms of the DE).

Fig. 4. Identification of a constant quotient of 2 variables (x1 = 2x2)

Fig. 5. Identification of the sum dependence

()
310

3
1

32172143322110
11

...

xbb

xxxaxxaxaxaxaa
wy

+
++++++

=
 (9)

()
() 2

1

31332110

3
1

32172143322110
22

...

xxbxbxbb

xxxaxxaxaxaxaa
wy

+++

++++++
=

 (10)

()
() 2

1

32332210

3
1

32172143322110
33

...

xxbxbxbb

xxxaxxaxaxaxaa
wy

+++

++++++
=

 (11)

Multi-layered D-PNN creates compound polynomial

functions. Main exponential functions of higher layers “carry”
some secondary functions of previous layers, describing the
partial relations of its variables. From mathematical point of
view the 1st hidden layer forms the inner functions, which
substitute the input variables of 2nd hidden layer neuron and
block polynomials - the outer functions. Provided this
assumption we are able to calculate the partial derivatives of
compound functions by variables of previous layers as DE
terms (14), from the inner functions (12) of an outer function
(13). These compound DE terms are formed as products of
partial derivatives of main and inner functions (15) [6].

),...,,()(21 niii xxxXy ϕϕ === i=1, … , m (12)

F(x1, x2, … , xn) = f(y1, y2, … , ym) = f(φ1(X), φ2(X),..., φm(X)) (13)
















∂

∂
⋅

∂
∂

++
∂

∂
⋅

∂
∂

+
∂

∂
⋅

∂
∂

=
∂
∂

∂

∂
⋅

∂
∂

++
∂

∂
⋅

∂
∂

+
∂

∂
⋅

∂
∂

=
∂
∂

∂

∂
⋅

∂
∂

++
∂

∂
⋅

∂
∂

+
∂

∂
⋅

∂
∂

=
∂
∂

n

m

mnnn

m

m

m

m

xy

f

xy

f

xy

f

x

F

xy

f

xy

f

xy

f

x

F

xy

f

xy

f

xy

f

x

F

ϕϕϕ

ϕϕϕ

ϕϕϕ

...

..........

...

...

2

2

1

1

22

2

22

1

12

11

2

21

1

11

 (14)

∑
= ∂

∂
⋅

∂

∂
=

∂
∂ m

i k

i

i

m

k x

X

y

yyyf

x

F

1

21)(),...,,(φ k=1, … , n (15)

Fig. 6. Identification of the 3-variable dependence with 2-combination
blocks

 x1 / x2 = 2

Block output

 w0 + +

 Neuron 1 Neuron 2

 (7) (8)

 x1 + x2 = x3

Block output

 w0 + + +

 Neuron 1 Neuron 2 Neuron 3

(9) (10) (11)

ETASR - Engineering, Technology & Applied Science Research Vol. 2, �o. 1, 2012, 167-172 170

www.etasr.com Zjavka: Recognition of Generalized Patterns by a Differential Polynomial �eural �etwork

Each block of the D-PNN forms partial DE terms utilizing
its basic and extended neurons. Single adjustable polynomial (P
in Figure 6.) without derivative part creates the block output
(applying in the next hidden layer) but the neurons are applied
only for the total DE composition. The blocks of the 2nd and
the following hidden layers create compound terms (CT) of the
DE using their additional extended neurons, outputs and inputs
of back connected blocks of previous layers. Consider for
instance the 1st block of the last hidden layer, which takes its
own neurons as 2 basic terms (16) of the DE (6). Subsequently
it creates 4 extended terms of the 2nd (previous) hidden layer
variables, using reverse output polynomials and inputs of 2
bound blocks. It creates 4 fractional compound terms of the DE
for 4 derivative input variables of previous hidden layer using
derivations of compound and inner functions (17). As couples
of variables of the inner functions φ1 (x1, x2) and φ1 (x3, x4)
differ from each other, their partial derivations are = 0 and so
the sum (15) will consist only of 1 term.

()
()

()
(),,

110

1
1

1,,
110

,,
2

,,
13

,,
22

,,
110

1
1
1

22

2
1

2
1

xbb

x
w

xbb

xxaxaxaa
wy

+⋅
=

+⋅

++
=

 (16)

(),
110

,,
1

,,
2

,,,
1

3

3
1
3

2

)()(2
1

2
1

xcc

x

x

x
wy

+⋅
⋅= (17)

()110

,
1

,
2

,,
1

,,
2

,,,
1

7

7
1
7 2

)()()(2
1

2
1

2
1

xdd

x

x

x

x

x
wy

+⋅
⋅⋅= (18)

The previous layer block reverse outputs are used to create

necessary partial derivations of the outer and inner functions
(of polynomials) of differential neurons (17). Likewise
compound terms can be created for the 1st hidden layer (18).
The 3 linked blocks forming 8 terms of the DE were attached
to the presently adjusted block. This can be performed well by
a recursive algorithm. It was not every term that was used in
the complete DE; some of them were necessarily left out. This
indicates “0” or “1” in the neurons of blocks and is ease to use
them as genes of GA. Parameters of polynomials are
represented by real numbers. A chromosome is a sequence of
their values, which can be easy mutated. The D-PNN’s total
output Y is the sum of all active partial DE term values
according to (19), which the present active amount a can be
built in.

a

y

Y

k

i

i∑
== 1 k = total amount of DE terms (19)

It can be seen, that the 3-variable D-PNN (Figure 6.)
substantially consists of 3 overlaying “wedge” networks (WN),
each going back out from the blocks of the last hidden layer
and gradually attaching to the derivative variables of previous
layers. The D-PNN of the 4 dependent input variables using 2-
combination blocks will have totally 6 blocks of all input
combination couples in the 1st hidden layer. The number of
combinations for all variables increases enormously each next
hidden layer. This could be solved by applying WNs, as only
some of the blocks are created and used. The total amount of
D-PNN’s hidden layers could equal at least to the number of
input variables (i.e. 4), as it must be able to create each
combination of which and to reach back all derivative variables

of the 1st layer. So WNs of the 1st hidden layer will involve
min. 4 random blocks, consequently in the 2nd layer will
contain min. 3 blocks, etc. This way the number of all WN
blocks decreases each next hidden layer until is reached just 1
block. D-PNN will have several overlaying WNs partly in the
layers again. Some WN layers overlay each other and so the
blocks can be used several times by different WNs (Figure 7.).
The blocks of the 2nd and following hidden layers can be
reconnected and this could compensate missing combination
blocks. The connections of the complete 1st hidden layer blocks
are fixed. Likewise the previous 3-variable D-PNN type does,
it can construct the partial fractional terms of the DE from
back-connected blocks of previous layers. All WN blocks
attach back gradually the derivative variables of previous
layers. The searching space contains a great amount of local
error solutions, which GA can finish easily. This problem is
caused by a lot of possible combinations of block inputs and
composed DE terms (only some of them may be employed),
which selection is a critical phase of the D-PNN’s construction,
besides the simultaneous parameter adjustment [10].

Fig. 7. “Wedge” networks of the 4-variable 2-combination D-PNN

The D-PNN of the 6 dependent input variables using 2-
combination blocks will have totally 15 blocks of all input
combination couples in the 1st hidden layer and 6 hidden layers.
However in experiment with right triangles (Figure 9 and
Figure 10.) it could be sufficient with 4 hidden layers again,
because there is the maximum of 4-variable dependence to
identify.

IV. EXPERIMENTS

4-variable D-PNN is able to identify row/column or
diagonal dependence of chess pieces (Figure 8.). Input vector is
formed by their x, y positions (row, column). If the white rook
checks the black bishop their x or y positions equal and this can
D-PNN learn to identify. Another relation occurs if the black
bishop checks the white rook, the sum or difference of their x
and y-positions are equal Ax+Ay=Bx+By or Ax–Ay=Bx–By. Table
1 and Table 2 show network responses to dependent and

 x1 + x2 = x3 + x4

 �

�

�

DE

�..

ETASR - Engineering, Technology & Applied Science Research Vol. 2, �o. 1, 2012, 167-172 171

www.etasr.com Zjavka: Recognition of Generalized Patterns by a Differential Polynomial �eural �etwork

independent variables of input vectors. Training data set can
consist of following 5 data samples x and y-positions of the
chess pieces (the chessboard was enlarged) [9]:

{1+22=20+3}, {16+1=2+15}, {34+3=30+7}, {60+30=42+48},
{5+25=2+28}, {2+5=4+3}

 1 2 3 4 5 6

Fig. 8. Relations of chess pieces

TABLE I. RESPONSES TO RANDOM INPUT VECTORS WITH 4 DEPENDENT
VARIABLES

Input vector Output

31 + 46 = 11 + 66 0.9654
18 + 57 = 24 + 51 1.0273
46 + 30 = 25 + 51 1.0018
58 + 44 = 17 + 85 1.0006
14 + 25 = 1 + 38 0.9882
4 + 23 = 8 + 19 1.0031

TABLE II. RESPONSES TO RANDOM INDEPENDENT INPUT VECTORS OF 4
VARIABLES

Input vector Output Input vector Output

46 + 55 = 3 + 108 (-10) 1.2041 25 + 45 = 51 + 9 (+10) 0.8461
11 + 55 < 27 + 49 1.1865 57 + 54 > 43 + 58 0.9564
56 + 49 < 5 + 110 1.1213 15 + 42 > 12 + 35 0.9179
8 + 29 < 21 + 26 1.1587 49 + 47 > 52 + 34 0.9162
45 + 34 < 2 + 87 1.1917 31 + 32 > 37 + 16 0.8704
3 + 39 < 26 + 26 1.4803 45 + 56 > 30 + 61 0.9515
35 + 9 < 18 + 36 1.2038 27 + 58 > 45 + 30 0.9228
29 + 6 < 37 + 8 1.1653 44 + 34 > 36 + 32 0.9267
60 + 43 < 41 + 72 1.0526 39 + 25 > 30 + 24 0.9174
5 + 40 < 40 + 15 1.2457 59 + 39 > 51 + 37 0.9414

A separating plane could be noticed, detached from the
relative “classes”, which have the same characteristic (if the
sum of the 1st couple is less then it should be, the output is less
then the desired round and other hand round). D-PNN can be
trained only with small input-output data samples (likewise the
GMDH polynomial neural network does) to learn any
dependence [8].

6-variable D-PNN can learn to identify (generalize) a
changeable shape (e.g. triangle) regardless of its size or

position in the input matrix (Figure 9.). Input vector of the D-
PNN is formed by x, y (row, column) coordinates of the 3
triangle apexes A, B, C. The dependence of points A, C is
diagonal, A, B vertical and B, C horizontal. As there are
simultaneously occurred 3 types of point relations, it is
necessary to increase the number of blocks of D-PNN’s hidden
layers. Training data set can consist of following 5 data
samples – right equal-based triangles :

{6,44,11,44,11,49}, {22,13,32,13,32,23}, {10,30,25,30,25,45},
{3,20,23,20,23,40}, {25,50,50,50,50,75}

Testing random right triangles must keep the apexes A, B, C
dependent to be correctly recognized by D-PNN. Table 3
shows responses of trained network to dependent right
triangles. Table 4. applies only vertical deformations (+ and –)
of right triangles in C apexes (Fig.10. down), to be shown a
transparent separating plane, detaching the relative triangles.

Fig. 9. Dependent right equal-sided triangle shapes

Fig. 10. Independent deformed right triangles in apexes A and C

1

2

3

4

5

6

ETASR - Engineering, Technology & Applied Science Research Vol. 2, �o. 1, 2012, 167-172 172

www.etasr.com Zjavka: Recognition of Generalized Patterns by a Differential Polynomial �eural �etwork

TABLE III. RESPONSES TO RANDOM INPUT VECTORS WITH 6 DEPENDENT
VARIABLES (RIGHT TRIANGLES)

Input vector (Ax,Ay Bx,By Cx,Cy) Output

34,44 60,44 60,70 1.0142
18,5 35,5 35,22 0.9692
15,39 35,39 35,59 0.9932
16,51 58,51 58,93 1.0095
29,51 45,51 45,67 1.0227
21,5 29,5 29,13 1.067

TABLE IV. RESPONSES TO RANDOM INDEPENDENT INPUT VECTORS OF 6
VARIABLES (DEFORMED RIGHT TRIANGLES IN C APEXES)

Input vector (A B C) Output Input vector (A B C) Output

13,36 42,36 33,65 0.8750 24,15 34,15 37,25 1.0713
21,27 59,27 47,65 0.8803 4,11 40,11 52,47 1.2376
9,10 34,10 26,35 0.8605 48,40 56,40 58,48 1.1255
12,43 25,43 21,56 0.9096 32,22 57,22 65,47 1.0885
35,10 57,10 50,32 0.9523 18,28 25,28 27,35 1.0558
2,12 28,12 20,38 0.9037 5,19 51,19 53,25 1.1906
6,43 42,43 30,79 0.8806 6,6 36,6 46,36 1.1850
16,35 48,35 38,67 0.8766 20,13 34,13 38,27 1.0477
13,48 16,48 15,51 0.9835 18,45 30,45 34,57 1.0857
10,8 49,8 36,47 0.9372 18,38 62,38 76,82 1.1325

V. DISCUSSION

Only linear dependencies of variables have been assumed
for simplicity in the examples presented. If there is an
occurrence of a non linear dependence of the input data, the
square power exponent variables would extend combination
polynomials of neurons and applied also as competent
derivative terms (20). The denominators of (20)(21) result from
the partial derivatives of the complete DE term polynomials of
numerators. The root square (or power) functions are likely not
involved into fractions (21), if the differences of values of input
variables are not too big (in case a real data model) as occurred
in presented examples.

()
() 21

21
2

2
1

21522110

4
1

2
2

2
18

2
2172

2
16215

2
24

2
1322110),(

xx

xxf

xxbxbxbb

xxaxxaxxaxxaxaxaxaxaa
yi ∂∂

∂
=

+++

++++++++
=

(20)

2
1

21
2

2
22210

215
2
24

2
1322110),(

x

xxf

xbxbb

xxaxaxaxaxaa
y j ∂

∂
=

++

+++++
=

 (21)

According to (12)-(15) it is possible to define higher

degree partial derivations of 2-variable compound function
F(x,y)=f(u,v) (22) [6]. As the variables of the D-PNN’s inner
functions u=φ(x1,y1) and ψ=(x2,y2) are different the 2nd , 3rd and
5th terms of eq. (23) are = 0 (as the partial derivation of ψ by x1
is = 0). Likewise the terms of (24) and (25) do [6].

)],(),,([),(),(yxyxfvufyxF ψϕ== u=φ(x, y) v=ψ(x, y) (22)

2

2

2

22

2

222

2

2

2

2

2
xv

f

xu

f

xv

f

xxvu

f

xu

f

x

F

∂

∂
⋅

∂

∂
+

∂

∂
⋅

∂

∂
+








∂
∂

∂

∂
+

∂
∂

⋅
∂
∂

∂∂

∂
+








∂
∂

∂

∂
=

∂

∂ ψϕψψϕϕ (23)

2

2

2

22

2

222

2

2

2

2

2
yv

f

yu

f

yv

f

yyvu

f

yu

f

y

F

∂

∂
⋅

∂

∂
+

∂

∂
⋅

∂

∂
+









∂
∂

∂

∂
+

∂
∂

⋅
∂
∂

∂∂

∂
+









∂
∂

∂

∂
=

∂

∂ ψϕψψϕϕ (24)

yxv

f

yxu

f

yxv

f

yxyxvu

f

yxu

f

yx

F

∂∂

∂
⋅

∂

∂
+

∂∂

∂
⋅

∂

∂
+

∂

∂
⋅

∂

∂
⋅

∂

∂
+










∂

∂

∂

∂
+

∂

∂

∂

∂

∂∂

∂
+

∂

∂
⋅

∂

∂
⋅

∂

∂
=

∂∂

∂

ψϕψψ

ψϕϕψϕϕ

22

2

2

2

2

22

 (25)

A real data example might solve the weather forecast based
on some trained data relations, which are used for calculating
the next state of a system. Let’s take several types of variables
(e.g. pressure, damp, temperature) partly describing states of
this very complex system. The input vector of the D-PNN is
formed by values of these variables in defined matrix
coordinates of a meteorological map. The training data set
includes definite states of a time interval and desired network
outputs. The output could mark the weather forecast as
“rainfalls”= 1, “cloudy” = 2, “sunshine” = 3. There can
naturally arise possible transient states (e.g. 1.4). The output is
computed for 1 locality of the map and could also predict the
atmospheric pressure or another quantity.

VI. CONCLUSION

Artificial neural networks in general respond to related
patterns with a similar output. They identify input patterns on
the bases of their relationship. Likewise, the identification of
unknown dependencies of the data variables could also be
considered. This could be regarded as a pattern of abstraction,
similar to that utilized by the human brain, which applies the
approximation with time-delayed periodic activation functions
of biological neurons in high dynamic system of behavior. D-
PNN is a new type of neural network, which performs
identification based on any unknown generalized relations of
input variables. D-PNN forms its functional output as a
composition of differential equation terms (which describe a
system of dependent variables) from rational integral functions.
The problem of the multi-layered D-PNN construction reside
creates every partial combination term for a complete DE in
utilizing some fixed low combination degrees (2, 3), while the
amount of variables is as a rule higher.

REFERENCES

[1] Ľ. Beňušková, Neuron and brain. Cognitive sciences, Calligram
Bratislava, 2002 (in Slovak).

[2] A.G. Ivakhnenko, “Polynomial theory of complex systems”, IEEE
Transactions on systems, Vol. SMC-1, No. 4, pp. 364-378, 1971.

[3] J. Hronec, Differential equations II., SAV Bratislava, 1958 (in Slovak).

[4] R. Rychnovský, J. Výborná, Partial differential equations and some of
their solutions, Publ. SNTL Praha, 1970 (in Czech).

[5] J. Kuneš, O. Vavroch, V. Franta, Principles of modelling, SNTL Praha,
1989 (in Czech).

[6] I. Kluvánek, L. Mišík, M. Švec, Matematics I., II., SNTL Bratislava,
1966 (in Slovak).

[7] S. Das, A. Abraham, A. Konar, “Particle swarm ptimization and
differential evolution algorithms: Technical snalysis, applications and
hybridization perspectives”, Computer and Information Science, Vol.
38, pp. 1-38, 2008.

[8] B. B. Misra, S. Dehuri, P.K. Dash, G. Panda, “A reduced and
comprehensible polynomial neural network for classification”, Pattern
recognition letters, Vol. 29, No. 12, pp. 1705-1715, 2008.

[9] L. Zjavka, “Generalization of patterns by identification with polynomial
neural network”, Journal of Electrical Engineering, Vol. 61, No. 2, pp.
120-124, 2010

[10] L. Zjavka, “Construction and adjustment of differential polynomial
neural network”, Journal of Engineering and Computer Innovations,
Vol. 2, No. 3, pp. 40-50, 2011

