
Engineering, Technology & Applied Science Research Vol. 9, No. 3, 2019, 4112-4115 4112

www.etasr.com Vidal-Silva et al.: Advantages of Giraph over Hadoop in Graph Processing

Advantages of Giraph over Hadoop in Graph

Processing

Cristian L. Vidal-Silva

Faculty of Economics and
Administration, Catholic University of the

North, Antofagasta, Chile

cristian.vidal@ucn.cl

Erika Madariaga

Faculty of Engineering
Bernardo O’Higgins University

Santiago, Chile

erika.madariaga@ubo.cl

Trung Pham

Information Technology Research Center,
Faculty of Economics and Business,
University of Talca, Talca, Chile

tpham@utalca.cl

Jose Miguel Rubio

Academic Area of IT and

Telecommunications,
Technological University of Chile

INACAP, Santiago, Chile

jrubiol@inacap.cl

Luis Alberto Urzua

School of Kinesiology,

Faculty of Health,
Santo Tomas University,

Talca, Chile

lurzua@santotomas.cl

Luis Carter

Industrial Civil Engineering Department,

School of Engineering,
Autonomous University of Chile,

Talca, Chile

luis.carter@uautonoma.cl

Franklin Johnson

Computing and Information Department,

Engineering Faculty,
University of Playa Ancha, Valparaiso, Chile

franklin.johnson@upla.cl

Abstract—This article presents a comparison of the computing

performance of the MapReduce tool Hadoop and Giraph on

large-scale graphs. The main ideas of MapReduce and bulk

synchronous parallel (BSP) are reviewed as big data computing
approaches to highlight their applicability in large-scale graph

processing. This paper reviews the execution performance of

Hadoop and Giraph on the PageRank algorithm to classify web

pages according to their relevance, and on a few other algorithms

to find the minimum spanning tree in a graph with the primary

goal of finding the most efficient computing approach to work on

large-scale graphs. Experimental results show that the use of
Giraph for processing large-size graphs reduces the execution

time by 25% in comparison with the results obtained using the

Hadoop for the same experiments. Giraph represents the optimal

option thanks to its in-memory computing approach that avoids
secondary memory direct interaction.

Keywords-Giraph; Hadoop; graph; big data; big graph

I. INTRODUCTION

Daily, 2.5 quintillion bytes are created globally [1]. The
size of the “digital universe” was 4.4 zettabytes in 2013 and a
tenfold growth is forecasted by 2020 [2]. Precisely, given this
growth exponential of information, the term big data is
popularized. According to [3], big data is defined as: “large
volumes, high speed and a great variety of information that
demand innovative and profitable forms of information
processing to improve understanding and decision making”.

Although there is a tendency to increase the space for
information storage, there is no equivalent increase in the speed
of access and processing. A direct solution to this problem, to
reduce access time and data processing, is the use of computer
clusters [4]. In this context, several distributed systems exist
which permit combining data from different sources, but with
high analysis and development costs, mainly for the
concurrency of tasks, their synchronization, access and data
transfer [4]. Hadoop, an open-source framework based on
MapReduce [5, 6] appears as a solution for the mentioned
issues. According to [7], big data processing closely associates
with unstructured information, that is, directly unrelated data.
However, in current social networks, such as Facebook and
Twitter, there are links between the component nodes, so their
direct representation as graphs is adequate. However, due to the
structure and associations of graphs, MapReduce and Hadoop
are not optimal for processing, due to the high cost of
input/output of information and the possibility of requiring
many chained MapReduce phases. In this context, Giraph [8, 9]
emerges. Giraph is an open-source counterpart of Pregel [10], a
graph processing system developed by Google for the
processing of large graphs. Although the generation of data
grows at a rate of 60% per year, the technologies related to big
data such as Hadoop and Giraph are still under development in
Chile. “We still need to know what big data can do for national
companies and how they could impact different business lines”
[11]. Only 17% of companies are implementing or planning to

Corresponding author: Cristian Vidal-Silva

Engineering, Technology & Applied Science Research Vol. 9, No. 3, 2019, 4112-4115 4113

www.etasr.com Vidal-Silva et al.: Advantages of Giraph over Hadoop in Graph Processing

apply big data in the short term in Chile [11]. The primary
objective of this work is to present a review of the application
of Hadoop and Giraph for the processing of graphs, and thus
highlight the practical advantages that Giraph has over Hadoop
when solving problems considering relational data which
usually support iterative algorithms, such as graph structures.
For this, this article presents a comparison performance results
of Hadoop and Giraph algorithmic solutions for a classic
problem (minimum spanning tree) and a more modern problem
(classification of web pages). This work extends the research of
[11] mainly to confirm the previously obtained results and
conclusions, and to show its applicability for the processing of
big data in developing countries like Chile.

II. BIG DATA

Hadoop [4, 12] is an open source framework created to
achieve secure, scalable and distributed computing. Hadoop is
based on Google documents for MapReduce [5, 6] and Google
file system (GFS) [13] and allows the distributed processing of
large data sets using computer clusters using simple
programming models.

A. MapReduce

Hadoop implements a computational paradigm called
MapReduce. Algorithmically, the base of MapReduce is the
“divide and conquer” approach, that is, it divides the problem
into small pieces for processing in parallel and thus obtains
solutions in a distributed environment [12]. The MapReduce
programming model composes of a Map function and a Reduce
function: Map receives a key-value input pair and produces a
set of intermediate key-value pairs. Then MapReduce groups
all intermediate values associated with the same intermediate
key as the input of the Reduce function. In this way, the
Reduce function accepts an intermediate key and a set of
related values for that key to mix these values and thus form a
new set of final output [6]. Usually, a solution in MapReduce is
performed in five stages: i) Splitting: the data are divided into
multiple parts and delivered to each mapper. ii) The mapper
executes the map function in charge of processing the data. iii)
The combiner works directly on the output of mappers for local
aggregation. iv) Shuffle: it is responsible for shuffling and
ordering the key-value pairs for the function Reduce. v)
Reducer: in the last step all the values with the same
intermediate key are reduced to generate the final key-value
pairs [6].

B. Hadoop Distributed File System (HDFS)

Hadoop includes a distributed file system (HDFS) that can
handle large amounts of data. The most efficient pattern of data
processing is to write once and read many times [4]. Such as in
a file system of a single disk, the files in HDFS are divided into
blocks for their storage and representation as independent units.
An HDFS cluster presents two types of nodes which operate in
a master-worker pattern: a Namenode (the master) and several
Datanodes (workers) [12]. The Namenode stores and manages
the metadata of the file system, and knows the Datanodes in
which all the real blocks for a given file are located. When the
data are retrieved, the client contacts the Namenode to obtain
the list of the requested data locations and then directly
contacts the Datanode to extract the real data [12]. Both,

MapReduce and HDFS, manage errors automatically by the
Hadoop framework [4].

III. BIG GRAPHS, PREGEL AND GIRAPH SOLUTIONS

Graphs are a finite abstract data type, which consists of a
set of edges and nodes or vertex. An edge between two nodes x
and y can be described mathematically by a function edge (x,
y) [7]. In Big Data analysis, graph processing is considered
computationally tricky due to its variable nature [7]. Besides,
graph processing is not adequate with general-purpose systems
such as MapReduce [14]. For the processing of large graphs
(big graphs), Pregel and Giraph are used, which are based on
the Bulk Synchronous Parallel (BSP) [15]. BSP is a parallel
computing model, in which the calculations are divided into
super passes (super-steps) separated by global barriers [16].

A. Pregel

In 2010 Google announced Pregel [10], a framework for
distributed graph processing based on BSP. Its objective was to
provide a certain level of abstraction so that programmers do
not have to deal with distributed memory management or
synchronization [8, 17]. The paradigm used by Pregel is “think
as vertex”. Pregel specifies each calculation regarding what
each vertex should do, and edges are the communication
channels for the transmission of the results from one vertex to
another. In each super-step, a vertex can execute a user-defined
function and change its status from active to inactive. An argue
vertex can vote to stop a super-step (inactive) and awake when
it receives a message (active) [16].

B. Giraph

Apache Giraph [8, 9] is an open-source alternative of
Pregel. In Pregel, to support multithreading, each worker is
assigned several partitions of the graph. During each super
step, a pair of available workers calculates threads with non-
calculated partitions. Each worker maintains its own message
store to store all incoming messages. To reduce the contention
in the warehouse, and to efficiently use network resources,
each computing thread has a cache buffer for all outgoing
messages [18]. To implement the BSP model, the workers
maintain two stores in each super-step, one for previous
messages and another for current messages [18]. Giraph
supports different data structures for the list of adjacent vertices
[16]. It is important to note that Giraph solutions run as
MapReduce tasks and they use Zookeeper to coordinate global
barriers [18]. A Giraph solution is organized as a set of
idealized iterative super-steps. In each super step, a vertex can
send messages to the other vertices, can get its stored values or
known information from its edges, and vote to stop. At the
beginning of the computation (super-step 0), all vertices start
with an active state. A vertex votes to stop because it decided,
from its local point of view, that its work is done and the
calculation can conclude. The delivery of a message changes
the state of a vertex from inactive to active. Giraph finishes the
calculation when all the vertices are inactive, and there are no
messages to send.

IV. EXPERIMENTS AND RESULTS

For performance comparison of graph processing between
Hadoop and Giraph, two algorithmic situations are considered:

Engineering, Technology & Applied Science Research Vol. 9, No. 3, 2019, 4112-4115 4114

www.etasr.com Vidal-Silva et al.: Advantages of Giraph over Hadoop in Graph Processing

• Classification of pages - PageRank: PageRank is an
algorithm created by Google [14] to classify web pages,
based on the idea that the most relevant web pages probably
receive more links from other web pages [16]. The web
conceptualizes as a directed graph in which all web pages
are nodes, and there are arcs between pages if there are
links between those pages. Typically, PageRank iterates
until reaching a convergence, that is, when the PageRank
values for each node no longer change. Therefore, at the
end of each iteration, PageRank should check the
convergence state. On the other hand, as authors in [19]
highlight, PageRank can also fix a fixed number of
iterations.

• Minimal Spanning Tree - Kruskal and Boruvka Algorithm:
The algorithms of Kruskal and Prim [20, 21] are standard
solutions to obtain a minimal spanning tree of a graph. This
paper uses an implementation of the Kruskal algorithm in
Hadoop, and one implementation of a Giraph solution to
find a minimal distributed spanning tree, Boruvka algorithm
[16].

Hadoop 2.4.0 and Giraph 1.1 in Ubuntu 15.10 were used
for both experiments. For the execution tests of both solutions,
due to hardware limitations, we decided to use Hadoop in
“Single Node Setup” mode [4] in a machine with two CPUs
and 8 GB of RAM. For comparison, PageRank, Kruskal and
Boruvka algorithms testing will be carried out with
implementations in Hadoop and Giraph, respectively. Besides,
we used a representative data set consisting of a graph with 31
vertices and 82 edges of weight one for the case of PageRank.
This data set corresponds to a set of cities of the region of
Valparaiso, Chile and their connection, that is, if there is a
direct road to connect these cities. Although these data are
small, regarding big data, we can extrapolate them for larger
computing scenarios.

A. Results

Both PageRank in Hadoop and Giraph were defined with
30 iterations / super-steps respectively. The calculation times of
each of these tests are shown in Figures 1-2.

Fig. 1. Results of the PageRank algorithm in Hadoop.

Kruskal’s algorithm found the minimum spanning tree
(MST) in around 3 seconds in Hadoop (Figure 3) in a single
iteration, while its implementation in Giraph found the solution
in around 0.7 seconds in 2 super-steps (Figure 4).

Fig. 2. Results of the PageRank algorithm in Giraph.

Fig. 3. Results of the Kruskal algorithm in Hadoop.

Fig. 4. Results of the Kruskal and Boruvka algorithm in Giraph.

To justify the obtained results, to process the entire graph,
MapReduce performs many chained tasks to achieve its
objective, and each task involves inputs and outputs to disk.
Ideally, an iteration in MapReduce represents a super-step in
the Giraph approach [7]. With that assumption, we can
establish an average time per iteration between the total time
and the number of iterations / number of super-steps, for each
of the four tests. Table I presents the mentioned results. Figure
5 shows a comparison of the average times for the calculations
made by Hadoop and Giraph with the Kruskal and Boruvka
algorithms, respectively, to find the minimal spanning tree of a
graph. When comparing the times associated with PageRank,
the Giraph solution is at least four times faster than Hadoop.
This difference increases to 8 times in the case of Kruskal in
Hadoop and Boruvka in Giraph to find a tree of minimum
expansion of a graph.

Engineering, Technology & Applied Science Research Vol. 9, No. 3, 2019, 4112-4115 4115

www.etasr.com Vidal-Silva et al.: Advantages of Giraph over Hadoop in Graph Processing

TABLE I. EXECUTION TIME IN HADOOP AND GIRAPH.

Test
Results

Total time (ms) Super-steps Avg. time (ms)
PageRank Hadoop 32.238 30 1.074,6
PageRank Giraph 7.925 30 264,2

Kruskal Hadoop 3.096 1 3.096

Boruvka Giraph 718 2 359

Fig. 5. A comparison between Hadoop and Giraph for the PageRank and

MST algorithms.

V. CONCLUSIONS

According to the results, Giraph presents a four times
higher efficiency on Hadoop in computation time of the
PageRank algorithm. This advantage increases to almost eight
times when it comes to finding the minimum spanning tree,
because of the advantage of Giraph to maintain a global
communication between each super-step without requiring
inputs and outputs to disk since each node can exchange
messages with others [19]. The previously described situation
is not possible in Hadoop, since MapReduce does not provide
any tool for global and direct communication between the
participants in each iteration. Also, the nature of the graphs
means that the computation of each node depends on its
neighboring nodes, which implies that MapReduce solutions
have to perform many chained iterations, which generates an
excessive I/O traffic. It should be noted that Giraph is not a tool
that comes to replace Hadoop, it should rather be a
complementary solution for given problems. Hadoop has a
complete ecosystem [4], which expands day by day, and it is
relevant to know the advantages of both technologies, in order
to assimilate them correctly. An immaturity still exists
regarding big data technology and available information about
its use and support use of big data tools in developing countries
such as Chile [2, 11]. Because the focus of this work is a
practical comparison between Hadoop and Giraph for graph
problems, a future work would be to make a comparison
between Giraph and current big data tools such as Apache
Spark [22] and Flink [23, 24], in real and research scenarios
such as model processing. Since Giraph’s primary focus is
graph processing, it is required to verify its potential
performance advantages.

REFERENCES

[1] I. Yaqoob, I. A. T. Hashem, A. Gani, S. Mokhtar, E. Ahmed, N. B.
Anuar, A. V. Vasilakos, “Big data”, International Journal of Information

Management, Vol. 36, No. 6, pp. 1231–1247, 2016

[2] A. K. Wahi, V. Ahuja, “The internet of things-new value streams for
customers”, International Journal of Information Technology and

Management, Vol. 16, No. 4, pp. 360–375, 2017

[3] P. Zikopoulos, C. Eaton, Understanding Big Data: Analytics for
Enterprise Class Hadoop and Streaming Data, McGrawHill Osborne

Media, 2011

[4] T. White, Hadoop: The Definitive Guide, O’Reilly Media, Inc., 2015

[5] J. Dean, S. Ghemawat, “Mapreduce: Simplified data processing on large

clusters”, 6th Conference on Symposium on Operating Systems Design
& Implementation, San Francisco, December 6-8, 2004

[6] J. Dean, S. Ghemawat, “Mapreduce: Simplified data processing on large

clusters”, Communications of the ACM, Vol. 51, No. 1, pp. 107–113,
2008

[7] M. Aurelio, B. Fagnani, G. Lotz, Dynamic Graph Computations using

Parallel Distributed Computing Solutions, Science without Borders, 3-
Months Project Report, Queen Mary, University of London, 2013

[8] R. Shaposhnik, C. Martella, D. Logothetis, Practical Graph Analytics

with Apache Giraph, Apress, 2015

[9] S. Sakr, F. M. Orakzai, I. Abdelaziz, Z. Khayyat, Large-Scale Graph
Processing Using Apache Giraph, Springer, 2017

[10] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser,

G. Czajkowski, “Pregel: A system for large-scale graph processing”,
2010 ACM SIGMOD International Conference on Management of Data,

Indianapolis, USA, June 6-11, 2010

[11] S. Valenzuela, C. Vidal, “Evaluacion de hadoop y giraph para el

procesamiento de grafos”, Jornadas Chilenas de la Computacin, XXVII
Encuentro Chileno de Computacin. Santiago, Chile, 2015 (in Spanish)

[12] S. Karanth, Mastering Hadoop. Packt Publishing, 2015

[13] S. Ghemawat, H. Gobioff, S. T. Leung, “The Google file system”,

Nineteenth ACM Symposium on Operating Systems Principles, Bolton
Landing, USA, October 19-22, 2003

[14] S. Brin, L. Page, “The anatomy of a large-scale hypertextual web search

engine”, Computer Networks and ISDN Systems, Vol. 30, No. 1-7, pp.
107–117, 1998.

[15] L. G. Valiant, “A bridging model for parallel computation”,

Communications of the ACM, Vol. 33, No. 8, pp. 103–111, 1990

[16] M. Han, K. Daudjee, K. Ammar, M. T. Ozsu, X. Wang, T. Jin, “An
experimental comparison of pregel-like graph processing systems”,

Proceedings of the VLDB Endowment, Vol. 7, No. 12, pp. 1047–1058,
2014

[17] S. Salihoglu, J. Shin, V. Khanna, B. Q. Truong, J. Widom, “Graft: A
debugging tool for apache giraph”, 2015 ACM SIGMOD International

Conference on Management of Data, Melbourne, Australia, May 31-
June 4, 2015

[18] M. Han, K. Daudjee, “Giraph unchained: Barrierless asynchronous

parallel execution in pregel-like graph processing systems”, Proceedings
of the VLDB Endowment, Vol. 8, No. 9, pp. 950–961, 2015

[19] J. Lin, C. Dyer, Data-Intensive Text Processing with MapReduce,

Morgan and Claypool, 2010

[20] M. Held, R. M. Karp, “The traveling-salesman problem and minimum
spanning trees: Part ii”, Mathematical Programming, Vol. 1, No. 1, pp.

6–25, 1971

[21] R. C. Prim, “Shortest connection networks and some generalizations”,
Bell System Technical Journal, Vol. 36, No. 6, pp. 1389–1401, 1957

[22] M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave, X.

Meng, J. Rosen, S. Venkataraman, M. J. Franklin, A. Ghodsi, J.
Gonzalez, S. Shenker, I. Stoica, “Apache spark: A unified engine for big

data processing”, Communications of the ACM, Vol. 59, No. 11, pp. 56–
65, 2016

[23] E. Friedman, K. Tzoumas, Introduction to Apache Flink: Stream
Processing for Real Time and Beyond, O’Reilly Media, 2016

[24] S. Papp, The Definitive Guide to Apache Flink: Next Generation Data

Processing, Apress, 2016

