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Abstract—Water resources are vital not only for human beings 

but essentially all ecosystems. Human health is at risk if clean 

drinking water becomes contaminated. Water is also essential for 

agriculture, manufacturing, energy production and other diverse 

uses. Therefore, a changing climate and its potential effects put 

more pressure on water resources. Climate change may cause 

increased water demand as a result of rising temperatures and 

evaporation while decreasing water availability. On the other 

hand, extreme events as a result of climate change can increase 

surface runoff and flooding, deteriorating water quality as well. 

One effect is water eutrophication, which occurs when high 

concentrations of nutrients, such as nitrogen and phosphorus, are 

present in the water. Nutrients come from different sources 

including agriculture, wastewater, stormwater, and fossil fuel 

combustion. Algal blooms can cause many problems, such as 

deoxygenation and water toxicity, ultimately disrupting normal 

ecosystem functioning. In this paper, we investigate the potential 

impacts of climatic factors affecting water eutrophication, how 

these factors are projected to change in the future, and what their 

projected potential impacts will be.  
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I. INTRODUCTION  

The planet is getting warmer as an impact of exponentially 
increasing anthropogenic greenhouse gas emissions, especially 
CO2. According to the fifth assessment report of the 
Intergovernmental Panel on Climate Change (IPCC), the global 
average surface temperature has undergone a warming of 
0.85°C (0.65 to 1.06) from 1880 to 2012, proving that global 
warming is occurring [1]. A warmer climate will affect the 
hydrological cycle and change atmospheric and meteorological 
properties such as precipitation patterns, atmospheric water 
vapor and evaporation [2-4], and consequently impact water 
quality by intensifying many forms of water pollution [5-7]. 
One form of water pollution is water eutrophication, which 
occurs when high concentrations of nutrients, such as nitrogen 
and phosphorus, are present in the water.  

In recent years, specific concerns about the impacts of 
climate change on water eutrophication, which causes global 
environmental challenges regarding the management of water 
resources, have been raised [8-15]. The Fifth Global 
Environment Outlook (GEO-5) reports that more than 40% of 
water bodies all around the world suffer from different levels of 
eutrophication [16]. The reason for this phenomenon is an 

important issue of great concern is its potential consequences, 
threatening the reliable supply of drinking water [17-19]. The 
terminology and application of trophic development of 
freshwaters date back to the early twentieth century. The 
consequences of anthropogenic-induced eutrophication of 
freshwaters did not become evident until the 1940s and 1950s 
as public concern over the severity of surface water 
deterioration became evident and triggered expanding scientific 
interest. Scientists debated which nutrient is primarily 
responsible for limiting productivity in lakes and rivers, an 
issue known as limiting nutrient controversy, and they 
ultimately agreed that phosphorus (P) is the key element in 
controlling eutrophication. [20]. Algal blooms in water bodies 
are a sign of eutrophication that indicates the presence of high 
concentrations of phosphorus and nitrogen. Algal blooms can 
form anoxic environments in the water and consequently 
deteriorate water quality [10, 15, 21]. Predictions indicate that 
with rising concentrations of atmospheric CO2, the occurrence 
of algae blooms will likely increase [22, 23]. Recent 
anthropogenic changes, such as urban, agricultural, and 
industrial development, have accelerated the progress of 
nutrient over-enrichment, leading to eutrophication in water 
bodies [24-26].  

Undesirable symptoms of eutrophication primarily occur 
during the plant growing season (spring and summer), when 
low flow, high water residence times, sufficient light levels and 
high water temperature promote rapid algal growth. During the 
growing season, the eutrophication risk mainly originates from 
point discharges, a major source of high concentrations of 
dissolved, bioavailable phosphorus fractions. At times when 
diffuse agricultural runoff contributions are relatively low, 
phosphorus concentrations from point sources become even 
higher in the receiving water bodies, as a result of reduced 
effluent dilution [27]. The trophic state in flowing waters 
depends mainly on phosphorus and nitrogen levels. Hydraulic 
flushing of nutrients, light limitation, and water velocity are 
essential in controlling algal growth. This suggests that rivers 
or riverine lakes with short retention times (<3 days) will show 
different effects compared to those with long retention times 
(>3 days) [28].  

Climate change can, directly and indirectly, affect 
eutrophication, as a result of interactions between 
meteorological factors and nutrient availability [24, 29]. The 
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existing literature shows that sensitive factors to climate change 
such as water temperature, precipitation, wind, and solar 
radiation can affect trophic conditions in water bodies. 
Therefore, to maintain water resources availability and safety, 
it is crucial to investigate the impacts of climate change on 
water quality in water resources. This paper briefly summarizes 
the potential impacts of climate change on the occurrence of 
eutrophication in water resources.  

II. CLIMATE CHANGE EFFECTS 

A. Temperature 

Regarding climate change, many factors are considered in 
order to predict how future global warming will occur. In this 
case, the amount of future greenhouse gas emissions is a key 
variable. Two different emissions scenarios, including RCP2.6 
(low emissions scenario) and RCP8.5 (high emissions 
scenario), show that by the end of the 21st century, the global 
surface temperature is expected to increase by 0.3°C-1.7°C and 
2.6°C-4.8°C under RCP2.6, and RCP8.5, respectively [30]. 
Temperature is an important environmental factor that 
influences chemical and physical properties in water 
ecosystems such as pH, salinity, solubility, and diffusion rates, 
and can consequently affect water eutrophication potential [31, 
32]. Air temperature and temperature in water bodies are in 
close equilibrium. Hence one of the immediate reactions to 
climate change is expected to be alterations in river and lake 
water temperatures [22, 33-35]. When water temperature and 
nutrient concentrations increase, algae growth is stimulated, 
leading to water eutrophication and algal blooms. As 
concentrations of phosphorous and nitrogen increase in lakes, 
rivers and estuaries, cyanobacteria become increasingly 
dominant. Cyanobacteria are a group of bacteria that grow in 
any type of water (fresh, brackish, or marine) and use sunlight 
to create food and survive. Because of their color, they are 
commonly known as “blue-green algae”. They grow quickly 
and bloom in warm, nutrient-rich environments. Water bodies 
experiencing frequent blooms of cyanobacteria show properties 
that can impact water quality as well as the health of the 
surrounding environment [36, 37]. Once the water temperature 
rises above 25°C, the growth of cyanobacteria accelerates [32, 
38-40]. Similarly, warmer temperatures could also stimulate 
earlier and more extended periods of potential algal blooms, as 
the immediate direct effect of a warmer environment [31, 41, 
42]. Moreover, warmer temperatures will affect nutrient 
loadings from soil and sediment, which can ultimately impact 
the trophic status of water [43].  

As the inflow to a reservoir gets warmer as a result of 
higher temperature, the water column will stratify more 
intensely, decreasing nutrient availability in the surface water. 
In this case, cyanobacteria will obtain nutrients from deeper 
depths and accelerate nutrient release in water [44, 45]. Higher 
temperatures will accelerate microbial activity in sediments at 
the bottom of lakes and rivers. In this case, the release rate of 
internal phosphorus will increase, and will contribute to a 
significant portion of the total nutrient load in the water [46]. In 
addition, higher water temperatures will reduce the degradation 
coefficients of water and decrease its self-purification capacity 
[10]. Therefore, under climate change conditions, the release of 
nutrient loadings from internal sources could still make water 

eutrophic, even if external sources of nutrients, such as waste 
discharge and non-point pollution are restrained [47]. 
Moreover, when the surface water gets warmer, water viscosity 
will decrease, and as a result, nutrient diffusion will increase 
towards the surface. In this situation, larger phytoplankton 
(photosynthesizing microscopic biotic organisms that inhabit 
the upper sunlit layer of almost all oceans and bodies of fresh 
water on Earth) will sink, and cyanobacteria will become more 
abundant [38, 48, 49]. As a summary, increasing air 
temperature will increase water temperature and deteriorate 
water quality conditions by accelerating the eutrophication 
process in water bodies, which can cause environmental and 
health-related issues [23, 26, 46].  

B. Precipitation 

Besides the temperature effects, the change in hydrological 
regimes is also a consequence of climate change. As the 
temperature is predicted to rise, precipitation will not change 
uniformly [30]. Under the RCP2.6 and RCP8.5 scenarios, 
climate model mean projections for 2081-2100 compared to 
1986-2005 indicate that annual mean precipitation will increase 
mostly around the equatorial Pacific and some high-latitude 
areas. However, projections show that mean precipitation is 
likely to decrease in certain mid-latitude and subtropical 
regions, although some increase in mean precipitation in many 
mid-latitude regions is also likely to occur under the same 
scenario. Therefore, in areas with projected higher 
precipitation, it is possible that intense extreme precipitation 
events will occur and cause more erosion and resuspension of 
sediments, ultimately resulting in higher concentrations of 
sediments and nutrients in receiving water bodies [24, 48]. 
Furthermore, these extreme events will increase contaminant 
discharge and affect non-point pollution by mobilizing them 
over land and increasing nutrient concentrations in receiving 
water bodies, consequently degrading water quality. [49, 51-
53]. Less precipitation can also increase the risk of 
eutrophication by lowering minimum flows. In this case, less 
water volume will be available for dilution of pollutants. As a 
result, increased concentration of contaminants can cause 
deoxygenation, by lowering dissolved oxygen concentration 
(DO) and increasing biochemical oxygen demand (BOD). 
Consequently, the risk of eutrophication, especially in water 
bodies with limited re-aeration capacity, will be increased [24, 
54]. Therefore, under climate change conditions and due to the 
alteration of regional precipitation patterns, water bodies are 
exposed to greater nutrient loads, which can ultimately lead to 
water quality deterioration.  

C. Wind 

The wind will also be affected by climate change, and will 
have direct and indirect impacts on water resources [39]. 
Authors in [50] used general circulation models, under the A2 
emission scenario, to predict the wind speed in different 
regions in 2050. Modeling results showed that across the boreal 
regions of the northern hemisphere, including Canada, tropical 
and subtropical regions, northern Europe, and Central and 
South America, stronger surface wind speeds will occur in 
2050, while decreasing wind speeds were predicted for 
southern Europe, East and South Asia, and much of the west 
coast of South America. The direct effects of wind refer to 
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blowing of algae from the water surface to the lakeshore or 
river banks and influencing these regions by forming algal 
blooms and changing environmental conditions. The indirect 
effect is the disturbance caused by the wind, which can 
circulate the water and mix different layers of the water 
column. This circulation enhances the mixture of nutrients and 
accelerates the release of nutrients from sediments [55]. Also, 
as the air temperature rises, wind mixes the warmer upper 
layers of water with the colder lower layers, which can speed 
up the volatilization, migration, and transformation of 
pollutants [9]. Authors in [56] used different sediment 
resuspension models to simulate nutrient distributions in the 
wind-dominated Salton Sea in the United States, which is 
highly eutrophic. They concluded that sediment resuspension, 
which induces both particulate and dissolved forms of 
nutrients, is the critical factor in nutrient cycling of the sea. 
Therefore, higher wind speeds will accelerate sediment 
resuspension, contaminant circulation, and finally exacerbate 
trophic conditions. Moreover, authors in [57] studied the Taihu 
Lake in China, which has experienced periods of severe 
eutrophication in the past. Model results, which coupled the 
biological processes and hydrodynamics in the lake, showed 
that temporal variations of eutrophication have high 
dependencies on meteorological forces. On the other hand, 
intense and high-speed winds can also restrain the formation of 
algal blooms by dissipating them and weakening their 
aggregation [58]. Therefore, the wind will have direct and 
indirect impacts on water trophic conditions, but it does not act 
as a single decisive operator, and mostly influences 
eutrophication along with other meteorological factors.  

D. Solar Radiation 

Global warming and solar radiation have mutual 
connections [59]. As an important source of energy, solar 
radiation plays a crucial role in photosynthesis in different 

ecosystems and is an essential factor for the growth of 
phytoplankton and other aquatic species. Therefore, the 
photosynthesis efficiency is dependent upon the temporal and 
spatial variations of solar radiation. Sufficient sunlight 
increases water temperature and the presence of nutrients 
altogether provide suitable conditions for the growth of algae 
and phytoplankton, finally resulting in water eutrophication 
[22]. Solar radiation affects a wide range of living organisms, 
by penetrating aquatic systems and acting as the energy source 
for plant photosynthesis. If plants do not receive sufficient 
amounts of sunlight, they take up oxygen from the water, and 
DO depletion will occur. Under anaerobic conditions, 
phosphorus release from sediments can cause water 
eutrophication [60, 61]. Algae distribution is also dependent on 
the intensity of solar radiation received at different depths. 
However, increased sunlight will not necessarily cause more 
algae growth. There is a maximum growth rate for algae, in 
which beyond this threshold, the growth rate will decrease [62, 
63]. Authors in [62] projected UV-B radiation at the Earth’s 
surface from 1960 to 2100. Although the global temperature is 
slated to rise until 2100, results of UV-B predictions showed 
that radiation change at different latitudes will alter differently. 
Projected UV-B radiation compared with 1980 levels, showed 
increasing trends at 60˝ to 90˝ southern latitude (more than 
20% increase), and decreasing trends at 60˝ to 90˝ northern 
latitude (around 10% decrease).  

E. Summary 

Besides the effects of temperature, precipitation, wind and 
solar radiation alteration, an increasing population, rapid urban 
development, and lack of land use planning continually 
contribute to the degradation of the environment and water 
resources. Figure 1 summarizes the impacts of climate change 
on water eutrophication.  
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Fig. 1.  The interaction among climate change factors and eutrophication.  
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III. CONCLUSION 

In this paper the effects of climate change on 
meteorological parameters such as temperature, precipitation, 
wind, and solar radiation were reviewed, and their potential 
impacts on water quality, especially eutrophication, were 
investigated. Based on the available literature and historical, 
scientific evidence, a changing climate will lead to degradation 
of water quality. The recent anthropogenic climate change will 
also amplify deterioration of trophic conditions in water 
resources, by changing the internal and external nutrient 
loadings, as an impact of global temperature rise, changing 
precipitation patterns, and altering wind speed and solar 
radiation intensity. Therefore, maintaining our invaluable water 
resources in a changing climate is a big and significant 
challenge for the policymakers today, and deserves 
considerable attention for the sake of future generations.  
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