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Abstract—This paper presents an improved artificial bee colony 
(ABC) technique for solving the dynamic economic emission 
dispatch (DEED) problem. Ramp rate limits, valve-point loading 
effects and prohibited operating zones (POZs) have been 
considered. The proposed technique integrates the grenade 
explosion method and Cauchy operator in the original ABC 
algorithm, to avoid random search mechanism. However, the 
DEED is a multi-objective optimization problem with two 
conflicting criteria which need to be minimized simultaneously. 
Thus, it is recommended to provide the best solution for the 
decision-makers. Shannon’s entropy-based method is used for the 
first time within the context of the on-line planning of generator 
outputs to extract the best compromise solution among the Pareto 
set. The robustness of the proposed technique is verified on six-
unit and ten-unit system tests. Results proved that the proposed 
algorithm gives better optimum solutions in comparison with 
more than ten metaheuristic techniques. 

Keywords-evolutionary computation; power generation 
dispatch; optimal scheduling; decision making; cost function 

I. INTRODUCTION  

Emission dispatch aims at minimizing emission of harmful 
gases, caused by fossil-fueled thermal units, such as CO, CO2, 
NOx and SO2 [1-2]. The combination of the above problems is 
called the economic emission dispatch (EED) problem. 
However, due to the dynamic nature of today’s network loads, 
it is required to schedule the thermal unit outputs in real time 
according to the variation of power demands during a certain 
time period [3]. To solve this modified EED problem, known 
as dynamic economic emission dispatch (DEED), several 
mathematical formulations have been suggested [3-6]. Usually 
the DEED problem is considered as a dynamic optimization 
problem having the same objectives as the EED over a time-
period of one day, subdivided into definite time intervals of one 
hour with respect to the constraints imposed by the generator 
ramp-rate limits (RRL) [3]. Therefore, the operational decision 
at an hour may be influenced by the one taken at a previous 
hour. Other constraints such as prohibited operating zones 
(POZ) and valve-point loading effects (VPLE) have been 
considered [7-8]. However, incorporating VPLE in the fuel cost 
function introduces ripples in the latter and the problem will be 
with multiple minima. On the other hand, POZ constraints due 
to physical operation limitation like vibrations in the shaft 

bearing [9] create discontinuities in the objective functions. 
Therefore, the DEED becomes a highly nonlinear problem with 
non-convex and discontinuous fitness functions. 

Classical methods like, dynamic programming [10] and 
linear programming [11], have been used to solve the static 
EED. However, these techniques are iterative and require an 
initialization step, which can cause the convergence of the 
search process into local optima. Moreover, they may fail to 
solve the dynamic case including the above constraints. 
Recently, metaheuristic search algorithms have demonstrated 
good performance and high efficiency when applied to 
complex optimization problems. These optimization 
procedures are classified into various groups in terms of the 
optimization methodology. Swarm intelligence-based 
evolutionary algorithms are the most used algorithms. Among 
metaheuristic-based optimization techniques, genetic algorithm 
[12], particle swarm optimization [13], simulated annealing 
[14], artificial bee colony (ABC) [7], tabu search [15], 
differential evolution [4] and bacterial foraging [5] have been 
suggested for solving the EED problem. Despite the fact that 
these techniques have been proven to have a clear edge over 
traditional methods, they have been criticized [16] because 
their efficiencies are sensitive to the form of problem 
constraints and number of units. Most of the above-mentioned 
works have concentrated only on the static EED problem. Only 
a few considered the multi-objective DEED problem. In 
addition, RRL and POZ constraints were not considered during 
the transition from the last hour of the current day to the first 
hour of the next day. 

ABC algorithms attracted much attention for EED problems 
[9]. ABC algorithm [17] simulates the foraging behavior of a 
real bee colony for maximizing the nectar amount stocked in 
the hive. Compared to several population-based techniques 
like, PSO and GA, the ABC algorithm is simple in concept 
with a few setting parameters, easy for combination with other 
optimization approaches and more effective. Unfortunately, 
like other evolutionary algorithms, the ABC method has also 
been criticized for its poor convergence rate and premature 
convergence due to the unbalanced exploration-exploitation 
processes [16]. Exploration corresponds to the capability to 
avoid convergence toward local optima by expanding the 
search into new areas, while exploitation is the capability to 
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search the space to find interesting new solutions. Thus, many 
improved techniques have been proposed to further enhance its 
performance [16-17]. In order to increase ABC's exploitation 
ability, the classical employed bee and onlooker bees’ phases 
have been changed by incorporating the so-called grenade 
explosion method (GEM) [18]. The GEM is an optimization 
method proposed in [19] and, as the name suggests, it imitates 
the mechanism of a grenade explosion. The effectiveness of 
this modified version of ABC, symbolized by GABC, was 
verified on a set of standard reference functions. In [16], the 
Cauchy operator is embedded into the scout bees' phase of the 
ABC in order to increase the exploration ability by generating a 
larger set of solutions instead of one random solution for each 
scout bee. 

A new method exploiting the advantages of GEM and 
Cauchy operator is proposed in the present work in order to 
solve the DEED problem with respect to all the above-
mentioned constraints. This optimization, symbolized by 
GCABC, integrates the GEM and Cauchy operator into the 
ABC technique. In addition, a new decision-making method 
based on Shannon’s entropy, called extended entropy-weighted 
reference (EEWR) approach, is developed and incorporated 
into the GCABC algorithm to select the most suitable solution 
among all non-dominated solutions provided by the 
optimization algorithm. Unlike other techniques like those 
based on graph theory [20] and Z-transformation [21], the 
EEWR is characterized by uncomplicated mathematics [22]. 
The main contributions of the current work are: 

 A new optimization technique, called GCABC, for 
scheduling power production of thermal units according to 
the expected load variations is proposed. To the best of our 
knowledge, the present work is the first attempt to solve the 
EED problem by the use of GCABC algorithm. In addition, 
a modified EWR-based technique, called extended entropy-
weighted reference (EEWR), is proposed for decision 
making. This technique has not been used in any field of 
power systems.  

 All aforementioned constraints are considered 
simultaneously in the DEED problem. 

 The RRL constraints are taken into account during the 
transition from the last hour of the one day to the first hour 
of the next day. 

II. PROBLEM FORMULATION 

The DEED problem is considered as a multi-objective 
optimization problem (MOP). It aims to minimize 
simultaneously total fuel cost and total emission by finding the 
power production of thermal power plants according to the 
predicted load demands. The resolution of the DEED problem 
can be accomplished by solving the static EED (SEED) 
problem over a certain period of time subdivided into smaller 
time intervals. DEED problem objectives and constraints are 
described below. 

A. Objective Functions 

Thermal units with multi-steam admission valves that work 
sequentially to cover the demand, involves higher order 

nonlinearity to total fuel cost due to VPLE, as illustrated in 
Figure 1. Unfortunately, neglecting the VPLE, which is 
required when using classical methods, causes some inaccuracy 
in the solution of the DEED problem. Taking into account 
VPLE constraints, a sinusoidal form is included in the total 
non-smooth cost function expressed in $/h, as given in (1). The 
second objective corresponding to the total emission in ton/h is 
described by (2): 

    
2

min

1 1
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 
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where, ia , ib , ic , id  and ie  are the cost coefficients of the i-th 

unit. While, i , i , i , i  and i  are the emission 

coefficients. t
iP is the output power in MW at the t-th interval. 

T is the number of hours. In this study, 24T  . 

The bi-objective DEED problem is converted into a mono-
objective optimization problem in [23]. In this study, the price 
penalty factor (PPF)-based method is adopted. Thus the 
combined economic-emission objective function FT can be 
described by (3): 

 1  T T TF C E      (3) 

where,  0,1rand  . For each generated value of , the 

function FT is minimized to obtain the optimum solution that 
can be a candidate solution to be in the Pareto front. The 
parameter  is the average of the PPF of all thermal units. As 
shown in (4), the PPF of the i-th unit is the ratio between its 
fuel cost, 

maxiC , and its emission, 
maxiE , for maximum 

generation capacity. 

max

max

 i
i

i

C
PPF

E
     (4) 

 

 
Fig. 1.  Fuel cost function with five valves (A, B, C, D, E) 

B. Problem Constraints 

The DEED problem is solved by minimizing the function 
FT defined in (3) with respect to the following constraints: 

 Generation capacity 

The real power output of each unit i should be within its 

minimum and maximum limits min
iP and max

iP : 

Generation (MW)
 

 

Fu
el

 c
os

t (
$/

h)

Without VPLE
With VPLE

E

C

A

B

D



Engineering, Technology & Applied Science Research Vol. 8, No. 5, 2018, 3321-3328 3323  
  

www.etasr.com Marouani et al.: A Modified Artificial Bee Colony for the Non-Smooth Dynamic … 
 

min max , 1, ,   t
i i iP P P i N    (5) 

 Power balance constraints 

At each time period t, the total power generation must cover 

the total demand power t
DP  plus the total transmission losses 

t
LP . Thus, the power balance constraints can be described by:  

1

0,  1,...,



   
N

t t t
i D L

i

P P P t T    (6) 

where t
LP  can be calculated using the constant-loss formula [3] 

given by (7): 

1 1 1  

   
N N N

t t t t
L i ij j oi i oo

i j i

P P B P B P B

  

(7) 

where, ijB , oiB , ooB  are the loss parameters also called B-

coefficients. 

 Generating unit RRL 

In practice, power generation of each unit i during two 
consecutive time periods is limited by its RRLs defined by (8) 
and (9): 

1  t t down
i i iP P R     (8) 

1  upt t
i i iP P R     (9) 

where, 1t
iP   is the previous output real power of the i-th 

machine. down
iR and up

iR  are the down-ramp and up-ramp limits 
of the i-th unit in (MW/time period).  

As one of the contributions of the present work, the RRL 
constraints are taken into account during the transition from the 
last hour of the current day to the first hour of the next day. 
Two constraints are embedded in the problem formulation and 
they are described by (10) and (11): 

24 1  down
i i iP P R     (10) 

1 24  up
i i iP P R     (11) 

 POZ constraints 

The POZ constraints are described as: 

min
,1
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where, ,
down

i kP  and ,
up

i kP  are down and up bounds of POZ 

number k, iz  is the number of POZ for the i-th unit due to the 
vibrations in the shaft or other machine faults. Therefore, the 

machine has discontinuous input–output characteristics [19]. 
Figure 2 shows the fuel cost function for a typical thermal unit 
with POZ constraints. 

 

 
Fig. 2.  Cost function for a thermal unit with POZ constraints. 

By considering the generation capacity, RRL and POZ 
constraints, the minimum and maximum limits of the power 

generation t
iP  of the i-th unit for the period t are modified as: 
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where 2,..., ik z  

III. ORIGINAL ABC ALGORITHM OVERVIEW 

ABC algorithm [17] is an efficient and robust technique for 
several optimization problems. As all swarm-based techniques, 
ABC algorithm starts by generating randomly an initial 
population of SN solutions. Each solution is considered as a 
food source and it corresponds to an employed bee. SN is half 
of the entire population size (PN). The onlooker bees constitute 
the second half. If D is the number of the decision variables, an 

i-th solution iX  will be represented by 1 2 ...   
i i i i

DX x x x . 

The fitness function evaluated at the solution iX , signifies the 
nectar quantity of the corresponding food source estimated by 
an employed bee: 
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where,  if X  is the objective function estimated at iX . 

The probability ip  to choose the candidate solution iX  by 
an onlooker bee is expressed as follows.  
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The onlooker bees update the selected food source iX  to 

discover a new one. The new solution iV  is generated by 

modifying only one parameter i
jx of iX  as: 

   i i i i k
j j j j jv x x x

    
(16) 

where, indices k and j are chosen randomly from  1,2,...,SN  

and  1,2,..., D , respectively. The index k must be different 

from i. The parameter i
j  is a real number   0,1  generated 

from the uniform distribution. During the onlooker phase, a 

greedy selection between food sources iV  and iX  will be 
done. If an employed bee’s food source cannot be improved 
through a pre-specified triggering threshold, called LIMIT, it 
becomes a scout and its solution will be abandoned. If iX  is 
an abandoned solution, the converted scout-bee starts to search 
for a new solution randomly according to (17): 

  min max min0,1  i
j j j jx X rand X X   (17) 

where, max
jX  and min

jX  are bounds of the food source in 

dimension j. 

IV. PROPOSED OPTIMIZATION ALGORITHM 

An enhanced version of the classical ABC technique is 
presented to enhance its exploitation and exploration abilities 
related to the onlooker and scout bees respectively. In [18-19], 
the ABC method was criticized for the random selection of the 
j-th dimension because it may slow the convergence of the 
algorithm and increase the risk of convergence of the search 
phase to a local optima. To ovoid these limitations, authors in 
[19] incorporated a new method, called grenade explosion 
based method (GEM), into the employed bee and onlooker bee 
phases. The idea behind this technique is to mimic the grenade 
explosion principle where, the fitness function is the overall 
damage of the explosion. In each cycle of the proposed method, 
it is assumed that there is only one grenade with one piece of 
shrapnel for each decision parameter. A procedure guideline 
for tuning the parameters of GEM is given in [19]. The 
shrapnel pieces are thrown in all dimensions to collect 
information about the area of the explosion which is considered 
as the old food source as given in (18). Then, a set of new food 
sources is proposed by the onlooker bees based on the damage-
per-shrapnel degree. This allows reaching the global solution 
more quickly. As given in (19), the optimal search dimension 
(OSD) of the new candidate i

OSDV  corresponds to the maximum 
damage in all directions. 

   i i i i k
t t t t tv x x x     (18) 

where,  1,2,...,k SN  is a randomly chosen index and k i

and  1,2,...,t D .  0,1i
t  is a random number.  

    max | 1,2,..., i i
OSD tfit V fit V t D   (19) 

As explained above, a greedy selection between the new 
solution iV  and the old one iX  is applied. In order to improve 
the global and local exploration abilities of the optimization 
algorithm and ensure the convergence into the global solution 
within a short calculation time, the Cauchy operator is 
embedded in the scout bee phase. The incorporation of a 
Cauchy operator in optimization techniques has been employed 
in some algorithms to enhance the global search ability [16]. 
This enhancement is due to the long tail of Cauchy distribution 
compared to other operators such as Gaussian distribution. As 
given in Figure 3, the standard Gaussian function has a large 
probability within the interval [-3,3]. Nevertheless, it is 
possible to make larger jumps in the search space using Cauchy 
operator. 

 

 
Fig. 3.  Standard Cauchy and Gaussian distributions 

In this study, the origin-centered Cauchy distribution with 
unit scale parameter is used. Thus, the new solution provided 
from an abandoned solution iX  will be obtained using (20) 
instead of (17). 
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Based on the above explanation, the main steps of the 
modified ABC algorithm are listed below. 

 Step 1: Initialization 
Preset population size PN (SN ) 
Initialize iteration: Iter = 0 
Preset Maximum Cycle Number (MCN) 
Fix triggering threshold (LIMIT) 
Initialize food sources using (4)  

 Step 2: Population evaluation 
Estimate fitness value of each source using (1) 
Initialize failure counter of each source Xi,   0FC i  

 Step 3: Cycle increment 

 Step 4: Employed bees’ phase 
for i= 1 to SN do 
Produce new source i

OSDV from iX using (19); 

Estimate the fitness value of i
OSDV  using (19); 
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Apply greedy selection between i
OSDV  and iX ; 

end for 

 Step 5: Onlooker bees’ phase 
t = 0;i = 1; 
while (t<SN) 
ifrand<Prob(i) 

1 t t  
Apply steps 1 to 2 of employed bee phase; 
end if 
Apply greedy selection between i

OSDV and iX ; 
if solution does not improve 

    1 FC i FC i ; 

end if 
1 i i ; 

end while 

 Step 6: Memorization of the best food source 

 Step 7: Conditional test 1: 
If cycle <MCN go to step 8, else go to step 10 

 Step 8: Conditional test 2: 
if   FC i LIMIT  go to step 3, else go to step 9 

 Step 9: Scout bee phase  
Apply Cauchy operator using (20) and (21) and go to step 3 

 Step 10: End 

V. EXTENDED ENTROPY-WEIGHTED REFERENCE APPROACH 

The DEED is a bi-objective optimization problem with 
contradictory functions. Consequently, results with any 
optimization algorithm will be a set of non-dominated 
solutions called Pareto front. Providing an adequate candidate 
Pareto-optimal solution for the decision makers (DM) is a 
persistent requirement. In the present study, a Shannon’s 
entropy-based multi-attribute decision-making (MADM) 
method is proposed to rank the obtained non-dominated 
solutions. The concept of Shannon’s entropy is used in several 
scientific domains such as material selection [22] and single-
sensor fault location [24]. This concept can be adopted for 
MOPs with n objective functions and m non-dominated 
solutions as: 

 Step 1: Construct the decision matrix   
 ij m n

X x , where,

ijx , called performance index, is the value of the j-th 

function for the i-th solution. 

 Step 2: Normalize matrix X in order to have performance 
indices comparable and dimensionless. 

*

2

1




ij

ij m

ij

i

x
x

x

     (22) 

 Step 3: Calculate entropy jE  as follows.  

* *
0

1

ln , 1,...,


  
m

j ij ij

i

E E x x j n   (23) 

where 
 0
1

ln
E

m
 and *ln ijx  is considered 0 for * 0ijx  . 

 Step 4: Compute the weight of each objective j. 

 
1

1

1






j

j n

j

j

E
w

E

    (24) 

The decision maker can assign a degree of importance jS  

for each objective function j called subjective weight. Thus, 
weights should be modified as follows. 

*

1

j j
j n

j j
j

s w
w

s w





    (25) 

 Step 5: Determine the i-th co-ordinate reference point (CRP) 
per objective function. It is defined as the highest 
performance index for maximization and the lowest for 
minimization [22]. However the DEED is a minimization 
problem. The CRP can be found using (26): 

*minj ij
i

r x      (26) 

 Step 6: Calculate the deviation of each performance index 
from the CRP for each objective function. Then, determine 
the maximum deviation for each alternative respecting all 
objective functions using (27). Each non-dominated 
solution is considered as alternative. 

* * *maxi j j j ij
j

z w r w x      (27) 

 Step 7: Classify all alternatives according to their maximum 
deviations then, select the alternative with rank one as the 
optimal alternative. 

VI. IMPLEMENTATION OF THE PROPOSED ALGORITHM  

Having been applied for the first time to solve one of the 
main power system problems, which is the DEED problem, the 
GCABC is to be tested in this section on two well-known 
benchmark power systems. In order to demonstrate the 
effectiveness of the proposed optimization technique, a 
comparison with ABC algorithm and more than six 
metaheuristic-based techniques used for solving the power 
dispatch problem is presented. For fair comparison, GCABC 
and ABC algorithms have been implemented with the same 
parameters. Results were obtained using MATLAB R2009a 
installed on a 64-bit PC with i7-4510U CPU @ 2.60 GHz. 

A. Case 1: Six-Unit System 

The six-unit system with quadratic cost and emission 
functions is used to test the GCABC algorithm in solving the 
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SEED problem. The system data are taken from [25]. The B-
loss matrix of this system is given below: 

6

140 17 15 19 26 22

17 60 13 16 15 20

15 13 65 17 24 19
10

19 16 17 71 30 25

26 15 24 30 69 32

22 20 19 25 32 85



 
 
 
 

  
 
 
 
  

B   (28) 

Power production cost and emission were optimized 
simultaneously by minimizing the combined objective function 
(3). The PPF of the six thermal units are given in Figure 4, 
hence, the average of these factors is 51.3073 $ / ton  .  

 

 
Fig. 4.  PPF for the six-unit system 

To collect the required number of non-dominated solutions, 
the proposed optimization algorithm was performed several 
times. Best, worst, mean solutions and standard deviation (STD) 
of the 10 trials obtained by the proposed GCABC and the 
original ABC algorithms, for total demand power about of 
700MW and the convergence ratio CR that equals to the number 
of successful trials NS divided by the total number of trials NT, 
are shown in Table I. 
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N
      (29) 

TABLE I.  RESULTS FOR 10 TRIALS 

 Total fuel cost ($/h) Total emission (ton/h) 
 GCABC ABC GCABC ABC 

Best 36912.24 36918.56 434.1320 434.1331 
Worst 36912.63 36913.46 434.1568 434.3861 
Mean 36912.29 36913.03 434.1368 434.2349 
STD 0.1176 0.3658 0.7328E-02 8.3723E-02 

CR (%) 90 70 90 60 

 
Table I shows the robustness of the convergence of the 

GCABC and its good stability compared to the original ABC. 
Pareto fronts for both GCABC and classical ABC algorithms 
are given in Figure 5. It can be seen that when the total cost in 
$/h is minimized, the total emission in ton/h is at its maximum 
value and vice versa. Figure 5 shows that Pareto solutions 
obtained using GCABC are well distributed when compared to 
those obtained using ABC algorithm. In addition, GCABC 
gives the best solutions for production cost or emission. The 
best compromise solution, shown in Figure 5, has been 
extracted from the Pareto solutions using the EEWR approach. 

The convergence of the proposed algorithm is depicted in 
Figure 6. GCABC algorithm converges into optimum solution 
at iteration 80 for best cost (Figure 6(a)) and at iteration 
number 54 for best emission (Figure 6(b)). 

 

 
Fig. 5.  Pareto solutions  

 
(a) 

 
(b) 

Fig. 6.  Convergence of the proposed algorithm 

The optimum power generation of all units for minimum 
cost and minimum emission using GCABC, ABC and other 
metaheuristic techniques [25] are summarized in Tables II and 
III. These Tables show that GCABC, FA (Firefly algorithm), 
BA (Bat Algorithm) and HYB (Hybrid algorithm) outperform 
the classical ABC algorithm. The investigation of the equality 
constraint described by (7) for each method, shows that 
GCABC is more accurate than FA, BA and HYB techniques. 
This is clearly depicted in Figure 7 where, an accuracy value of 
each method is given by calculating the difference between the 
total production and the sum of the total load and power losses 
as described in (29). In Figure 7, the accuracy is calculated 
with 4 digits after the decimal point. 
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B. Case 2: DEED Problem for the Ten-Unit System with 
POZs 

The well-known benchmark test system, called the ten-unit 
system, was used to prove the feasibility of GCABC for 
solving the DEED problem including all operating constraints 
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such as, VPLE, RRL and POZ. The RRLs corresponding to the 
transition from the last hour of the current day to the first hour 
of the next day, given by (10) and (11) were taken into account. 

 

 

Fig. 7.  Accuracy of GCABC, FA, BA and HYB for different load 

TABLE II.  BEST SOLUTION FOR MINIMUM COST (PD=700MW) 

Method GCABC ABC FA BA HYB 
P1 (MW) 281,562 318,442 283,151 282,862 282,491 
P2 (MW) 100,000 100,000 100,000 100,000 100,000 
P3 (MW) 1,192.695 1,270.720 1,188.216 1,189.333 1,188.833
P4 (MW) 1,193.578 1,201.647 1,188.329 1,186.760 1,185.778
P5 (MW) 2,294.322 2,269.768 2,309.801 2,307.614 2,305.090
P6 (MW) 2,132.045 2,030.748 2,124.811 2,127.731 2,132.178

Losses (MW) 194.202 191.325 194.311 194.324 194.373 
CT ($/h) 36912.24 36918.56 36912.19 36912.08 36912.19

ET(ton/h) 500.53 494.25 501.02 501.02 501.08 

TABLE III.  BEST SOLUTION FOR MINIMUM EMISSION (PD=700MW) 

Method GCABC ABC FA BA HYB 
P1 (MW) 804.827 767.280 801.523 801.431 801.506 

P2 (MW) 822.259 797.532 824.019 824.033 824.054 

P3 (MW) 1,140.623 1,097.203 1,139.655 1,139.684 1,139.570

P4 (MW) 1,137.692 1,182.489 1,134.758 1,134.763 1,134.851

P5 (MW) 1,631.220 1,695.130 1,634.493 1,634.530 1,634.436

P6 (MW) 1,628.759 1,626.760 1,630.944 1,630.950 1,630.975
Losses (MW) 165.378 166.394 165.398 165.397 165.397 

CT ($/h) 38105.00 37987.80 38101.09 38100.95 38101.13

ET(ton/h) 434.13 434.66 434.13 434.13 434.13 
 

The problem becomes highly non-linear and more 
complicated. The B-loss matrix of the system is given as: 

0.49 0.14 0.15 0.15 0.16 0.17 0.17 0.18 0.19 0.20

0.14 0.45 0.16 0.16 0.17 0.15 0.15 0.16 0.18 0.18

0.15 0.16 0.39 0.10 0.12 0.12 0.14 0.14 0.16 0.16

0.15 0.16 0.10 0.40 0.14 0.10 0.11 0.12 0.14 0.15

0.16 0.17 0.12 0.14 0.35 0.11 0.13 0.13 0.
10 4 B

15 0.16

0.17 0.15 0.12 0.10 0.11 0.36 0.12 0.12 0.14 0.15

0.17 0.15 0.14 0.11 0.13 0.12 0.38 0.16 0.16 0.18

0.18 0.16 0.14 0.12 0.13 0.12 0.16 0.40 0.15 0.16

0.19 0.18 0.16 0.14 0.15 0.14 0.16 0.15 0.42 0.19

0.20 0.18 0.16 0.15 0.16 0.15 0.18 0.16 0.19 0.44
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(30) 

Total cost and emission functions were minimized 
individually and simultaneously according to the variation of 

the power demand t
DP  in MW over a time-period of one day, 

subdivided into 24 time intervals of one hour (relevant data 
were taken from [12]). Results obtained using GCABC were 

compared with other techniques used recently in this field such 
as IBFA [23] and NSGAII [12]. The comparison results, shown 
in Table IV, confirm that the proposed GCABC outperforms 
the other optimization techniques in providing the optimum 
generation schedule for the DEED problem. This good 
performance was obtained despite the constraints (10) and (11), 
which were considered in GCABC. 

TABLE IV.  META-HEURISTIC TECHNIQUES COMPARISON 

 Minimum total cost ($/h) 
Minimum total emission 

(ton/h) 

Method 
Without 

POZs 
With POZs 

Without 
POZs 

With 
POZs 

GCABC 2474472.8 2484750.6 293416.3 293651.3 
IBFA 2481733.3 NA 295833.0 NA 

NSGAII 2.5168x106 NA 3.1740x105 NA 
 

VII. CONCLUSION 

Dynamic economic emission dispatch (DEED) is a tricky 
optimization problem. The quality of its optimal solution is 
influenced by the operating constraints, such as valve-point 
loading effects, prohibited operating zones and ramp rate limits 
(RRLs). Within this context, the present study proposed a new 
artificial bee colony (ABC)-based technique for solving the 
DEED problem. Moreover, power balance constraint was also 
considered. Unlike previous works, the RRLs were embedded 
in the solution procedure during the transition from one day to 
the next. The proposed optimization technique incorporates the 
grenade explosion method and Cauchy operator in the classical 
ABC algorithm to avoid the random search in the different 
ABC phases. To provide adequate compromise solution for the 
decision makers, an approach based on extended entropy-
weighted reference was proposed. The validation of the 
proposed optimization algorithm was verified on ten-unit 
system test with POZs. Comparison results with more than ten 
metaheuristic techniques show that the proposed algorithm 
gives the best optimum solutions. 
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