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Abstract— Leakage current monitoring is widely employed to 

investigate the performance of high voltage insulators and the 

development of surface activity. Field measurements offer an 

exact view of experienced activity and insulators’ performance, 

which are strongly correlated to local conditions. The required 

long term monitoring however, results to the accumulation of 

vast amounts of data. Therefore, an identification system for the 

classification of field leakage current waveforms rises as a 

necessity. In this paper, a number of 500 leakage current 

waveforms recorded on a composite post insulator installed at a 

150 kV High Voltage Substation suffering from intense marine 

pollution, are investigated. The insulator was monitored for a 

period of 13 months. An identification system is designed based 

on the considered data employing Fourier analysis, wavelet 

multiresolution analysis and a neural network. Results show the 

large impact of noise in field measurements and the effectiveness 

of the discussed system on the considered data set. 
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I.  INTRODUCTION  

Outdoor insulation is an important part of transmission and 
distribution systems, since a single insulator failure may cause 
an excessive outage of the power system. During operation, 
electric, mechanical, thermal and chemical stresses apply to 
outdoor insulators. One of the most influential mechanisms 
however, is the pollution phenomenon. The basic stages of the 
phenomenon as described in [1,2], are as follows: the first step 
is the accumulation of contaminants on the insulators’ surface. 
In the case of hydrophilic insulation (e.g. porcelain), the 
presence of a wetting mechanism (e.g. rain, fog, humidity) 
transforms the contaminants layer into a conductive film and 
the flow of leakage current (LC) on the surface is permitted.  
Initially, this current is resistive and sinusoid but as activity 
advances distorted sinusoid current is recorded. The surface 
heats and dries up unevenly and areas of higher resistance, 
called dry bands, are formed. The voltage distribution along the 
insulator is altered. Increased stress along the dry bands is 
observed and dry band arcs appear, which, under favorable 
conditions, may propagate and ultimately lead to a complete 
flashover of the insulator.  The presence of the arc in the 
current path is indicated from the on-set time delay of LC 
waveform in every half-cycle, which causes a knee-like shape.   

Polymer insulators and coatings are used to prevent film 
formation, and therefore suppress activity, due to their 
hydrophobicity. However, such materials experience cycles of 
hydrophobicity loss and recovery [3-7]. The phenomenon is 
highly correlated with environmental and surface conditions 
(temperature, wind, location etc) [1-8]. Therefore, only field 
measurements can offer an exact view of the experienced 
activity and insulators’ performance. It should be noted that 
during a hydrophobicity loss period, the waveform shapes 
recorded on hydrophobic insulators are similar to those 
recorded on hydrophilic ones [8]. The main issue regarding 
field leakage current monitoring however, is that activity is 
rapid, rather rare and cannot be safely predicted. Therefore, 
continuous long term field monitoring is required. The long 
term monitoring combined with the necessary high sampling 
rate results to the accumulation of vast amounts of data. 
Further, field conditions exaggerate the noise factor and 
therefore a percentage of the gathered data may be incoherent 
[9]. In this paper, a data set of 500 LC waveforms recorded on 
an insulator located in the field during a period of 13 months, is 
investigated. An identification system capable of identifying 
four different types of waveforms is designed based on the 
considered waveforms. The identification system employs 
Fourier analysis in order to identify noise generated 
waveforms, wavelet analysis and especially STD_MRA in 
order to extract patterns from activity portraying waveforms 
and a neural network to automate the identification process. 

II. MEASUREMENTS SETUP 

The waveforms investigated in this paper have been recorded 

on a 150 kV post composite insulator located in the 

Linoperamata 150 kV High Voltage Transmission Substation 

of the Greek Network. The monitoring period was 13 months. 

The Linoperamata Substation is located next to the coast and 

suffers from intense marine pollution. The Greek Public Power 

Corporation (P.P.C.) has issued a large project to cope with the 

problem, and as a part of that project several insulators and 

coatings have been, or still are, monitored and investigated. 

Some of the published results can be found in [8-11]. A 

schematic representation of the measuring apparatus employed 

to monitor leakage current is shown in Fig. 1.  
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Figure 1.  A schematic representation of the LC measuring apparatus 

The measurement of leakage current is acquired by 
inserting in the LC path a collection ring and a Hall sensor. The 
acquired data are transmitted to a central data acquisition 
system (DAQ) and sampling is performed at a rate of 2 kHz. A 
user-defined time window is set (e.g. 24 hours) and the DAQ 
records one waveform for each time-window (e.g. one 
waveform per day). The waveform that is recorded is the one 
portraying the highest peak value. Various time-windows have 
been applied during the 13 months of monitoring. Each 
waveform has a length of 480ms which with a 2 kHz sampling 
rate corresponds to 960 data points. The DAQ is periodically 
connected to a laptop in order for data to be retrieved. The 
MATLAB software has been employed for further processing 
of retrieved data and for the design and evaluation of the 
identification system. 

III. WAVELET ANALYSIS AND THE STD_MRA 

TECHNIQUE 

Wavelets are a mathematical tool for signal analysis. 
Extended wavelet theory can be found in [12,13]. Wavelet 
analysis allows simultaneous time and frequency analysis of 
signals. A wavelet function is an oscillatory function, with an 
average value of zero and a band-pass like spectrum.  The basic 
concept in wavelet analysis is to select an appropriate wavelet 

function Ψ  (the mother wavelet) and then perform the analysis 
of a signal using translated (shifted) and scaled (dilated) 
versions of the mother wavelet. The continuous wavelet 

transform is given by (1) where α  represents the scale, b  

represents the position, and  
*Ψ represents the complex 

conjugate of Ψ . 
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Multiresolution analysis (MRA) is a wavelet based filtering 
algorithm, which was created as a theoretical basis to represent 
signals that decompose in finer and finer detail [12,13]. The 
main idea is to use wavelet analysis to decompose the original 
signal in two parts: the approximation, which contains the low-
frequency part of the signal, and the details, which contains the 
high-frequency part. The first stage of decomposition will give 
the first level approximation (a1) which if decomposed will 
give the second level approximation (a2) and so on. Detail 
analysis is performed with a contracted, high frequency version 
of the mother wavelet, while approximation analysis is 
performed with a dilated, low frequency version of the same 
wavelet. An example of MRA performed in a LC waveform is 
shown in Fig. 2.  

In this paper, the STD_MRA technique is used in order to 
extract patterns from LC waveforms. Each LC waveform is 
decomposed in six levels using MRA and the standard 
deviation (STD) of the details (d1, d2, …, d6) extracted in each 
level of the MRA is calculated. The normalized six-point 
vector, called STD_MRA vector, is then used as a pattern for 
the corresponding waveform. The STD_MRA vector is 
normalized because similar LC waveform shapes can portray 
various amplitudes. The mathematical expression of the 

standard deviation σ  for a n-point vector x , is given in (3), 

where x  is given in (4). Considering that the shape of the 

mother wavelet should be similar to the shape of the signal,  
Daubechies 4 wavelet is chosen as a mother wavelet. The form 
of the approximation and details during the MRA is directly 
linked to the shape of the mother wavelet, which means that 
decomposition will produce Daub4-like wavelets, as shown in 
Fig. 2. The frequency band of approximation and details for 
each decomposition level is showed in Table I. 
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Figure 2.  Six level MRA analysis of a LC waveform. a1-a6 shows the 

approximation and d1-d6 shows the details through levels 1-6. 

TABLE I.  FREQUENCY BANDS FOR DIFFERENT MRA LEVELS  

Decomposition 

Level 

Approximation Details 

1 0~500         (Hz) 500~1000          (Hz) 

2 0~250         (Hz) 250~500            (Hz) 

3 0~125         (Hz) 125~250            (Hz) 

4 0~62.5        (Hz) 62.5~125           (Hz) 

5 0~31.25      (Hz) 31.25~62.5        (Hz) 

6 0~15.625    (Hz) 15.625~31.25    (Hz) 

IV. ACTIVITY PORTRAYING WAVEFORMS AND 

EXTRACTED PATTERNS 

Three different categories for activity portraying waveforms 
were set after the investigation of the considered data set. 
Sinusoid and distorted sinusoid current are described as Type 
A. Dry band arcs that are sustained for a limited number of half 
cycles are described as Type B and excessive arcs that are 
sustained throughout the whole waveform are described as 
Type C. An example of each type and the corresponding 

pattern derived from STD_MRA is portrayed in Fig. 3,4 and 5 
respectively. 

V. THE ARTIFICIAL NEURAL NETWORK 

Artificial neural networks (ANN) are highly parallel, 
adaptive learning systems that can learn a task by generalizing 
from case studies of the tasks. If a problem can be posed as a 
problem of mapping outputs to inputs, then an ANN can be 
used as a black box that learns the mapping from examples of 
known cases of correlated inputs-outputs. The selection and the 
design of the ANN was done considering the attributes 
described in [14-16] related to simplicity, speed and efficiency. 
Among the various forms of ANN architectures, the multilayer 
Feed Forward network with back propagation learning 
algorithm was chosen. This architecture (also known as Multi-
layer Perceptron architecture) is suitable for recognizing 
patterns that don’t evolve with time. 

 

 

Figure 3.  A Type A waveform and it’s the STD_MRA pattern 

 

 

Figure 4.  A Type B waveform and the STD_MRA pattern 

 

 
Figure 5.  A Type C waveform and the STD_MRA pattern 

In order to identify categories that are located in the same area, 

but are not linearly separated (such as the patterns extracted in 

this study), one hidden layer is sufficient. The number of inputs 
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is six (equal to the elements of the pattern-vector) and the ANN 

must identify 3 categories, therefore three output neurons are 

sufficient. Each Type is correlated to a three-element output 

vector easily separable from the others. Type A to [1 0 

0]’,Type B to [0 1 0]’ and Type C to [0 0 1]’. In order to 

minimize the risk of  “trapping” the algorithm around a local 

minimum, the number of neurons per layer should decrease  

from the input layer to the output layer. Hence, five neurons are 

selected for the hidden layer. The hyperbolic tangent function 

is chosen for the hidden layer for its speed and efficiency. The 

Log-Sigmoid function is chosen for the output layer in order to 

compress the outputs into the [0,1] domain. The learning 

algorithm used is the Levenberg-Marquardt due to its speed in 

the case of medium-sized ANNs.  The train set consists of 4 

Type A waveforms, 3 Type B waveforms and 6 Type C. A 

schematic representation of the ANN is illustrated in Fig. 6. 

VI. NOISE GENERATED WAVEFORMS 

Noise generated waveforms can be attributed to various 
field related conditions (cable faults, equipment faults, 
operation of circuit breakers, switching of heavy loads etc) [9]. 
Noise generated waveforms vary in form, and some typical 
waveforms are shown in Fig. 7. Those waveforms will lead to 
erroneous results if fed to the neural network. Therefore, it is 
highly desirable to be identified and discarded at the early 
stages of the identification system, using deterministic criteria. 
The voltage frequency in the Greek system is 50 Hz and 
therefore the fundamental frequency of every leakage current 
waveform should be 50Hz.  This criterion can be used to 
discard waveforms as the first three in Fig. 7. However, 
waveforms similar to the last one in Fig. 7, can exhibit a 50Hz 
fundamental. An example is shown in Fig. 8. An amplitude 
criterion could be applied in order to discard such waveforms. 
However, a noise generated spike, can be superimposed on 
such waveforms, as shown in the first waveform of Fig. 7, and 
thus allowing them to exceed any threshold. Therefore, a 
simple low pass filter with a cut off frequency of 200Hz is 
employed, in order to remove spikes while maintaining the 
main part of the waveform, and then an amplitude criterion is 
applied.  

 

 

Figure 6.  A schematic representation of the ANN 

 

Figure 7.  Noise generated waveforms 

 

 

Figure 8.  Two noise generated waveforms and their frequency content 

VII. THE IDENTIFICATION SYSTEM 

A block diagram of the identification system is shown in 
Fig. 9. Initially, the frequency content of each LC waveform is 
calculated using the Fourier transform. If the fundamental 
frequency of the waveform differs from 50 Hz then the 
waveform is attributed to noise. If the waveform exhibits a 50 
Hz fundamental, then it passes through the low-pass filter and 
the amplitude of the filtered waveform is calculated. If the 
amplitude of the filtered waveform is found smaller than 1 mA, 
then the waveform is attributed to noise. Otherwise, 
STD_MRA is performed on the original waveform (not the 
filtered one). The extracted pattern (the STD_MRA vector) is 
then fed to the Artificial Neural Network which identifies the 
waveform type.  

 

 

Figure 9.  Block diagram of the identification system 



ETASR - Engineering, Technology & Applied Science Research Vol. 1, �o. 1, 2011, 8-12 12  
  

www.etasr.com Pylarinos et al : Automating the Classification of Field LC Waveforms 

 

VIII. RESULTS AND DISCUSSION 

The identification system was able to successfully identify 
all 500 waveforms and results are shown in Table II. The 
results show the significant impact of noise in field leakage 
current waveform monitoring. Further it is shown that the 
discussed identification system can successfully recognise and 
further categorize activity portraying waveforms. 

TABLE II.  NUMBER OF WAVEFORMS PER TYPE 

Waveform 

type 

�umber of  

waveforms  

NOISE 460 

TYPE A 9 

TYPE B 7 

TYPE C 24 

SUM 500 

 

However, it should be mentioned that the design of the 
discussed identification system is based upon the considered 
data set, which is relatively small. Further investigation of field 
waveforms is required. However, results show that the 
STD_MRA technique combined with neural networks can be 
applied in order to identify different types of field leakage 
current waveforms, although it is highly probable that further 
investigation may result to the modification of the system and 
possibly to the add of new categories. 

IX. CONCLUSION 

Leakage current monitoring is widely employed in order to 

investigate surface activity on high voltage insulators and to 

evaluate their performance, which are both strongly correlated 

to local conditions. Field monitoring can offer an exact view 

of the insulators’ performance and the experienced activity. 

However, the necessary long term monitoring results to the 

accumulation of vast amounts of data and the implementation 

of an identification system rises as a necessity. In this paper a 

number of 500 waveforms recorded over a 13 month period on 

a 150 kV post composite insulator located at a 150 kV High 

Voltage Substation suffering from intense marine pollution, is 

investigated. An identification system is designed, capable of 

identifying four basic types of waveforms, including noise 

generated waveforms. Results show that noise is significantly 

exaggerated in the field. In addition, it is shown that wavelet 

analysis, and especially the STD_MRA technique, combined 

with neural networks can be successfully employed to 

automate the classification of field leakage current waveforms. 
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