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Abstract—Due to technological improvement and changing 
environment, energy grids face various challenges, which, for 
example, deal with integrating new appliances such as electric 
vehicles and photovoltaic. Managing such grids has become 
increasingly important for research and practice, since, for 
example, grid reliability and cost benefits are endangered. 
Demand response (DR) is one possibility to contribute to this 
crucial task by shifting and managing energy loads in particular. 
Realizing DR thereby can address multiple objectives (such as 
cost savings, peak load reduction and flattening the load profile) 
to obtain various goals. However, current research lacks 
algorithms that address multiple DR objectives sufficiently. This 
paper aims to design a multi-objective DR optimization 
algorithm and to purpose a solution strategy. We therefore first 
investigate the research field and existing solutions, and then 
design an algorithm suitable for taking multiple objectives into 
account. The algorithm has a predictable runtime and guarantees 
termination. 

Keywords-optimization; demand response; demand side 
management; algorithm engineering; greedy heuristic 

I. MOTIVATION 

Nowadays, because of technological improvements and 
changing environment, energy grids are facing various 
challenges, such as growing energy demand, new consumption 
patterns through new living behaviors and emerging economies 
and therefore rising pollution (e.g., carbon emissions) [1]. As a 
result, sustainable concepts such as renewable energy (e.g., 
photovoltaic (PV), wind and water) that is moreover often used 
in a decentralized way and new appliances, especially electric 
vehicles (EVs) are implemented [2]. These concepts thereby 
result in a more volatile energy generation and consummation 
that affects both supplier and consumer. Effects of these might 
be critical peaks, contingencies, a volatile load profile, and 
disadvantages in the market performance as well as an 

insufficient infrastructure usage. These can result in blackouts, 
brownouts, shortages, a high spinning reserve and can endanger 
energy grid reliability. Especially residential context 
management faces major transformation—for example, 
increasing implementation of EVs and decentralized energy 
generation as well as new storages—and can contribute to this 
problem, as the energy consumed in this sector is about 38% of 
the total consumption and therefore worthy enough to be in our 
scope [3]. However, to support these situations, a management 
of new appliances in energy grids is necessary. 

One possibility to manage appliances in such grids is given 
by demand response (DR). DR focuses on optimizing 
consumption patterns, for example, according to external 
signals (e.g., pricing signals). Therefore, DR uses algorithms 
which can be heterogeneous regarding addressed objective, 
optimization methods or communication structure [4]. 
Optimization in DR is carried out by shifting or managing 
loads which is provoked by incentive-based programs [5] such 
as different types of dynamic pricing (e.g., time-of-use pricing 
(ToUP), critical-peak pricing (CPP), and real-time pricing 
(RTP) [6, 7]). In order to allow using dynamic pricing, 
different infrastructure (smart metering, controlling and 
communication mechanisms) is required. Due to the fact that 
the existing infrastructure is not widespread, a popular dynamic 
pricing scheme is ToUP with two different pricing intervals: a 
low pricing interval in the off-peak hours (usually in the night 
and the early morning) and a high pricing interval during the 
peak hours. This approach has the advantage that the pricing 
signal is known and predictable, and the communicational 
effort is low. However, this mostly generic and simple 
approach may result in misleading incentives—for example: a 
user, switching on all deferrable devices at the time the lower 
pricing interval starts. Thus, a new peak is created and the load 
profile is fluctuating. Consequently, we need a pricing that 
does (i) not need further infrastructure and (ii) addresses the 
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misleading incentive from ToUP. A possible solution is, based 
on the ToUP, to provide a pricing function that extra charges 
the additional peaks and a fluctuating load profile or benefit if 
additional peaks are avoided and a flattened load profile is 
achieved. Similar types of pricing signals/tariffs already exist 
[8], for example, pricings that (a) try to deliver a load depended 
pricing function, (b) deliver a critical peak pricing signal or (c) 
combine three different pricing intervals and a fourth, optional, 
pricing phase during peak hours. In order to achieve cost-
savings with the new pricings, consumers need to respect not 
only the time-of-use of appliances, but also peak load reduction 
and load profile flattening. 

However, current DR algorithms usually take a single 
factor or objective into account (e.g., costs or peak-load 
reduction [9, 10]). Thus, we currently lack the considering of 
multiple relevant factors. Particular algorithms try to combine 
different goals, for example, to minimize costs and maximize 
the comfort level of users [10–12]. Authors in [13] identified 
four objectives, addressing major DR goals: lower energy 
consumption, peak load reduction, load profile flattening and 
cost reduction. Authors in [14] address multiple goals, 
however, the resulting optimization problem gets complex and 
challenging to solve. They therefore propose a greedy 
algorithm to find a solution. Nevertheless, to use this algorithm, 
an extensive amount of data is needed, and thus, the 
optimization is slow, and the communication and 
computational costs are high. Hence, a possible solution to 
optimize the usage with DR in the stated pricing scheme, is to 
address multiple objectives simultaneously. However, we 
currently lack the research that contributes to the achievement 
of multiple goals at the same time while requiring less 
information, due to reduced communication and calculation 
costs [10], and is also easy to implement. This study reports on 
the design, implementation and analysis of a particular 
algorithm which is capable of considering multiple DR-
objectives. With this new algorithm several stakeholders can 
benefit such as (a) users as they can reach several goals (e.g. 
realize cost savings and maximize welfare), (b) energy 
providers as they can give more incentives to the users and 
thereby achieve more efficient generation or predictability, (c) 
energy grids can get more stable and can react more flexible on 
contingencies, (d) appliances (e.g. EVs) and infrastructure (e.g. 
storages and PVs) will be embedded in a more fertile way, (e) 
emissions will be reduced, and (f) acceptance of DR may 
increase. 

II. RELATED WORK 

A. Methods and Algorithms in the DR Field 

In order to identify solution concepts for an algorithm 
suitable for realizing multiple goals and to ensure that no 
research exists which already answers our research question 
sufficiently, we conducted an extensive literature search. 
Moreover, [15–17] conducted literature reviews in the field and 
were consequently considered as well. One finding is, that 
especially the supplier side has been in the focus in this 
research field (e.g., the Trading-Agent-Competition deals with 
the question, how energy suppliers can give an optimal pricing 
signal to the consumers, according to a given set of energy 

demand and predicted consumption [18]). Focusing on the 
consumer side, to the best of our knowledge, we could not 
identify any appropriate solution. Addressed goals thereby are 
heterogeneous such as cost reduction [19–21] or peak load 
reduction [22–24]. Some algorithms try to achieve two goals 
simultaneously, for example, reducing costs while maximizing 
users’ comfort (or at least retain a certain comfort level) [25–
28]. These goals are often realized on the basis of a cost 
function which is externally given by an energy supplier and 
the comfort level is considered as an additional condition to the 
objective function. Authors in [14] considered multiple goals, 
however, these are not suitable for answering our research 
question sufficiently, as multiple and difficult to solve 
optimization functions are used. Moreover, authors in [13] 
identified multiple-objectives that can be achieved when 
implementing DR in the residential context. The optimization 
problem is constructed with multiple objective functions, each 
optimizing towards one goal (load profile flattening, cost 
reduction, comfort maximization, peak load reduction). 
However, multiple objective functions mostly return in a 
complex problem and the solution therefore is more difficult. 
Hence, we could not identify any research, answering our 
research question sufficiently. However, we get an idea, how a 
possible algorithm could be arranged. 

B. Model from the DR Field 

The main goal of our study is to consider several objectives. 
A constrained multi-objective optimization problem (CMOP) is 
defined as follows [10, 29] ( x =vector of inputs): 

)](),...,(),([)( 21 xfxfxfxF k  

Under the additional conditions ( ()g and ()h =conditional 
functions): 

0)( xgi  mi ,...,1   

0)( xh j  nj ,...,1   

Under certain assumptions, a pareto-optimal solving 
strategy can be found, however, often this is not given because 
the optimization model is too complex. Some DR models can 
be traced back to this generalized model [13]. Because we want 
to derive a single optimization function model and we have to 
consider several constraints regarding the appliances [30] to 
meet the application area, we choose the optimization model of 
[31], based on [30], which aims at reducing the costs of the 
overall system with the help of a ToUP, which can be 
exchanged to several other DP alternatives. Our model uses the 
following variables: 

Let N be all considered living units and An  be all the 
appliances of living unit Nn   and ω be the sample rate of 
the discrete model (number of time periods) over one day. 
Moreover, let   


Nn Aa

h
an

h

n
hx ,

 with 

},...,1,0{  Zh be the sum of all appliances nAa  of all 

living unit Nn  in the timeslot h . 
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Let k
anl ,

 be the load profile in a local time interval 

},...,1,0{ ,anlTk   ,  


lTk

k
anan ll ,,

 the load sum and 

an ,  the length of load nAa . In doing so, we can transform 

a given horizontal and inseparable load profile from its local 
time interval Tl to the global one T through shifting the whole 
Tl by an appropriate constant mn,a, i.e., ank mkh ,  with 

ananm ,,0   . 

Furthermore, let min,
,

h
an  be the min and max,

,
h

an  be the max 

borders for a load h
anx ,

 with Th , nAa  so we can 

specify, in which borders the intensity of load a can be shifted, 
i.e., max,

,,
min,

,
h

an
h

an
h

an x   . We note that the given load 

profiles have to satisfy max,
,,

min,
,

h
an

h
an

h
an

kl    for all lTk   to 

get a feasible solution. 

Let αn,α be the starting and βn,α be the ending time slot of a 
load for an appliance α, then we can restrict time interval Τ to 
[αn,α, βn,α ]. We note that the interval length between αn,α and 
βn,α has to be at least the length of the load profile δn,α. to get a 
feasible solution, i.e., βn,α−αn,α≥δn,α. 

Turning a constraint i  on and off for each appliance a  

individually let }1,0{i
ac  be a binary variable that shows if a 

constraint is turned on or not for the appliance α.  

The objective function describes the costs of the given load 
profiles, while the cost in a timeslot h  is a function depending 
on h  and the total load hx  i.e., hhh xxhcc *),( . 
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III. RESEARCH ΜETHODOLOGY 

Due to the fact that we want to create a new artifact, our 
research methodology follows the Design-Science-Research 
(DSR) paradigm [32]. Moreover, for designing an algorithm, 
we found two different approaches: (a) “algorithm theory” 
(AT) and (b) “algorithm engineering” (AE) [33]. AT focuses 
on the formulation of the mathematical model and afterwards 

proofs that it finds an (optimal) solution in a guaranteed time. 
AE addresses the application area, which gets more important 
nowadays, as data volume, real time computing, etc. is getting 
more complex. This approach does not aim at proofing a 
guaranteed time and optimization for all possible inputs but 
rather to guarantee a good performance and result for common 
inputs of the application area. The evaluation is carried out 
with an experiment, which is an inductive reasoning approach. 
The AE approach consists of five different (main) steps: 
modeling the application area as basis for the design phase, 
followed by the analysis of the designed algorithm, 
implementation of the algorithm and finally the evaluation. 
Τhese steps have a strong relationship to the application, 
receiving application depending information (e.g. input data or 
the mathematical model) or contributing to the application (e.g. 
delivering a library to use or giving a performance guarantee). 
Because the DR context, as our application area, is a complex 
field [34], we assume the AE approach as more suitable. 
Moreover, the evaluation in the DSR field should focus the real 
world problem, respectively the application area [35]. 

IV. DESIGN 

A. Adapted Optimization Model 

The stated model (section II.B) aims at cost reduction. For 
expanding this, we need to identify suitable objectives in the 
field in order to design an optimization model. Authors in [13] 
identified several objectives that need to be integrated in the 
optimization model. These indicators match with most of the 
DR objectives, such as peak load minimization, load profile 
flattening, reliability ensuring, market performance 
maximization or utility and welfare maximization. As these are 
additional objectives, they need to be included in the 
optimization function (done in [13] in a generalized form for a 
single home). Nevertheless, authors use multiple optimization 
functions, which result in an even more complex problem and 
the algorithm gets inefficient, for example, regarding the 
calculation time [31]. We therefore need less objective 
functions [33]. Our main goal is to design an optimization 
model with only one objective function, thus, we need to 
consider all goals there. One approach, as the cost function is 
already integrated in the stated model, could be realized with 
the help of ‘penalty costs’. The basic idea is that all three 
objectives influence a cost factor, which then, based on a kWh 
price, gives the costs a certain timestamp for placing the load. 
The objective function is formulated in the following way, over 
the optimization horizon: h

hh
anx

xcc *)(min 0
,

 
, where 

  is the vector of additionally needed information to calculate 
the penalty costs. 

First of all, the timeslot is needed to consider time 
dependent costs (e.g. ToUP or CPP). In order to achieve a 
flattening of the load profile, measured for example by the 
Mean-Squared-Error (MSE), the fluctuation needs to be 
minimized. Therefore, we implement rising penalty costs for 
deviations from the arithmetic mean of the last X timestamps. 
This means, if the placement of a certain load in timeslot Y 
rises or lowers the consumption in that timeslot more than a 
certain percentage compared to the arithmetic mean of the last 
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X timeslots, the cost factor is raised and penalty costs are 
added. The same procedure is chosen to integrate a more 
effective peak load reduction. If the placement in timeslot Y 
will create a new peak, the cost factor should be raised by a 
certain percentage. 

At this point, two upcoming questions must be answered: 
first, how can the additional information be gathered and, 
second, how do the penalty costs look like. The penalty costs 
need certain parameters, which need to be instantiated (filled 
with concrete values). For example, how much are the penalty 
costs increasing when creating a new peak? However, because 
the selection of the concrete values does not influence the 
performance of the algorithm according to its runtime, we do 
this in the following analyzation phase. The objective function 
now looks the following: 

h
h

h

hx
xccch

an
*)(min 00

,
    (10) 

Both function c() and vector θ still need to be defined. θ  
needs to involve information about the timestamp h, the load in 
this timestamp hx , the arithmetic mean of the last j timestamps 
MEAN(h-j) and the actual peak load PEAK. Moreover, 
parameters for (a) the cost function (a ToUP with two different 
intervals for low price (LP) and high price (HP) is chosen) with 
additional information, such as costs in different intervals and 
interval lengths, (b) increasing cost rate ρ for σ% of deviation 
from the mean, and (c) increasing cost rate τ for a new peak are 
needed. 

 )),(,,()( PEAKjhMEANxhcc h  (11) 
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B. Needs for Additional Information 

The initial optimization model requires a cost function, 
depending on the timeslot and the amount of energy 
consumption in this timeslot. This information is suitable for 
most pricing schemes such as ToUP and RTP. By using the 
new objective function, we now need further information about 
the arithmetic mean of the last j timeslots and the highest peak 
so far in the overall load profile. Depending on the control 
scheme (e.g. [4]), this information can be given on different 
ways: 

 Autonomous control: This control scheme has no 
communication and a local decision making. Therefore, the 
local controller can only access local information and the 
optimization is done based on this information. However, 
this local information should be easily accessible because 

the local controller has not to deal with security and privacy 
concerns [36].  

 Direct control: In this case (one or two way 
communication) the centralized controller has all the 
needed information and the decision making about the load 
shifting is made directly. However, we have to deal with 
privacy concerns etc. 

 Indirect control and transactional control: In both cases the 
decision making is done locally. However, because of the 
one or two way communication infrastructure, the 
information needed can be send either from the central 
controller or the other users. Besides privacy concerns, it 
has to be argued, which information is used: only each 
user’s local information of or the overall information from 
the grid. 

C. Possible Solving Strategies 

In order to solve the stated optimization problem, we need a 
suitable method. EAs have proven to be effective in finding 
good approximations of CMOPs’ optimal solutions, as stated in 
[10]. Other possibilities are greedy, hill-climbing or branch-
and-bound algorithms [37, 38]. The greedy heuristic is a 
method relatively easy to implement with a guaranteed runtime 
and already known in the DR field. Especially the runtime 
needs special attention here. Hence, we choose the greedy 
heuristic. However other heuristics are possible too. Solving 
the optimization problem with the greedy heuristic can be done 
in two different ways. The classic greedy algorithm—in the DR 
field—sorts all shiftable loads either downward or upward 
according to their (summarized) consumption. This means, the 
biggest or lowest load is picked first. Afterwards, the load is 
placed in the “best” timeslot. No matter which sorting strategy 
is chosen, we need to identify the best timeslot to place the 
picked load afterwards. In former greedy applications, this is, 
for example, the place with the lowest energy consumption or 
the timeslot with the biggest energy generation. In our 
algorithm, the best placement is threefold: (a) cheapest place 
according the cost-function, (b) place with the lowest resulting 
fluctuation of the load profile and (c) no new peak is created. 
An advantage of our approach is that the functionality remains 
more or less the same compared to the classic greedy, only the 
identification of the best placement changes. The greedy 
pseudocode for solving our algorithm is shown in Table I. 

TABLE I.  GREEDY PSEUDOCODE 

Start Take maximum/minimum load 
02 

 

Search the cheapest place for the load 
03 

 
Calculate consumption – generation 

04 Find lowest result 
05 Place the load at this place 

End Take the next load and start again 

V. ANALYSIS 

The analysis should provide two outcomes: first, the 
algorithm’s success in finding a solution and its runtime. 
Because we have a solution strategy—here a greedy 
heuristic—and an algorithm that places the load, we need to 
look at both parts of our solving strategy. We can state, that the 
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Greedy heuristic will achieve a result, as we just have to sort 
the amount of shiftable loads and place them afterwards till 
they are all set. Next, our algorithm focuses each possible 
timeslot and calculates the costs. Afterwards, the time with the 
lowest costs is selected. Accordingly, we argue that the 
termination is guaranteed, as a timeslot can be identified. The 
runtime is a little more complex. We need to sort n loads—
thus, we have an average runtime of O(n·log(n)) and O(n²) in 
the worst case, for example, with quicksort. Moreover, our 
placement algorithm needs to look at m timeslots and calculate 
the costs for each the runtime therefore is O(n·m). The overall 
runtime is then O(m+n·log (n)) for the average case and O 
(n·m+n²) for the worst case. As we can expect the average case 
most likely or we can obligate the users to deliver the loads 
pre-sorted, we can be relatively sure to get an average case. As 
we are in the AE setting, which means the application area is 
more important than the worst case, we can guarantee a 
performance of O(n·m+n·log(n))=O(n·(m+log(n))). Following 
our research methodology, the analysis is an evaluation of the 
first step according to the functionality and runtime. We can 
now state, that both can be guaranteed. 

VI. CONCLUSION 

A. Contribution 

In this article we discuss, that in the DR field a multiple 
objective optimization is valuable and useful. Hence, a new 
multi-objective optimization problem and a possible solving 
strategy for the non-linear problem (CMOP) is formulated and 
suitable factors for consideration in the CMOP are derived. The 
overall runtime is O(n·(m+log(n))). 

B. Limitations 

First, we cannot be sure, that we found all relevant factors 
to answer the question sufficiently. However, even if a new 
factor has to be taken into account, the optimization problem 
and the cost function can be enhanced. Second, we cannot 
assure that neither the formulated optimization problem nor the 
solving strategy with a greedy heuristic is the best or optimal 
solution. As we did not state to formulate or find the best 
performing solution, but a first iteration towards this, we 
assume the research question answered (to this point). 

C. Further Research 

In further steps of our research, we particularly (1) 
implement the proposed algorithm and (2) carry out various 
experiments for evaluation. For creating an easy to use library 
for different strategies, we plan to program the algorithm in 
JAVA and deploy an API. The implementation phase includes 
that the following parameters need to be filled with values: 

 How much should the cost factor raised, when the actual 
placement deviates too much from the mean? 

 How much deviation from the mean is too much? 

 If a new peak is created, how much should the cost factor 
increase? 

As a follow up step, we plan to evaluate the algorithm with 
an experiment. Therefore, appropriate data has to be selected 
and prepared. Recorded data from naturalistic living units 
(analyzed for example in [39, 40]) or artificial data, which has 
a sufficient quality [41, 42] is possible. In the naturalistic data 
case, we have to add additional information to the data, for 
example, the time of usage. For generating artificial data, the 
LoadProfileGenerator (LPG) [43] can be used, since it has 
predefined load profiles and uses a behavior model for each 
user in a living unit to simulate the data. We already conducted 
first simulations with single households as well as with 
different combinations in a microgrid. The runtime was as 
expected. Moreover, the received results indicated, that we 
achieved the same or nearly the same cost-savings compared to 
a cost-only-objective algorithm. However, we achieved a better 
load flattening and peak load reduction compared the status 
quo (no DR) on the one side and the cost-only algorithm on the 
other side, but, neither the load profile flattening nor the peak 
load reduction was as good as that of a convex cost algorithm 
which was our aim in the first place. Nevertheless we reached 
(nearly) the same amount of cost savings while the load profile 
flattening and peak load reduction were achieved as well in 
these early stage simulations. 
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