
Engineering, Technology & Applied Science Research Vol. 8, No. 1, 2018, 2389-2392 2389  
  

www.etasr.com Assis and Romao: Numerical Simulation of 1D Unsteady Heat Conduction-Convection in Spherical … 
 

Numerical Simulation of 1D Unsteady Heat 
Conduction-Convection in Spherical and Cylindrical 

Coordinates by Fourth-Order FDM 
 

Leticia Helena Paulino de Assis 
Basic and Environmental Sciences Department 

University of Sao Paulo 
Lorena, Sao Paulo, Brazil 

leticia.hpa@alunos.eel.usp.br  

Estaner Claro Romao 
Basic and Environmental Sciences Department 

University of Sao Paulo 
Lorena, Sao Paulo, Brazil 

estaner23@usp.br 
 

 

Abstract—This paper aims to apply the Fourth Order Finite 
Difference Method (FDM) to solve the one-dimensional unsteady 
conduction-convection equation with energy generation (or sink) 
in cylindrical and spherical coordinates. Two applications were 
compared through exact solutions to demonstrate the accuracy of 
the proposed formulation. 

Keywords-central difference method; cylindrical and spherical 
coordinates; numerical simulation; numerical efficiency 

I. INTRODUCTION 

According to [1], conduction refers to the transport of 
energy in a medium due to the temperature gradient. The one-
dimensional convection-diffusion equations with transient heat 
generation were solved by the Fourth-Order FDM. The 
transient regime arises with the change of boundary conditions. 
If the surface temperature of a system is changed, the 
temperature of each point of that system will change until it 
reaches a stationary temperature distribution. It is important to 
emphasize that the idea of using the Fourth Order Finite 
Difference Method has already been successfully implemented 
in [2-6] for problems set in Cartesian coordinates, and thus, the 
same idea in cylindrical and spherical coordinates is now 
proposed. This paper will investigate numerically the one-
dimensional unsteady convection-diffusion equations with heat 
generation in cylindrical and spherical coordinates. From [1, 7], 
we have the equations, respectively, 
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where T(r,t) is the temperature (K), r is the cylindrical or 
spherical coordinates (m),  is the thermal conductivity 
(W/m.K), ρ is the specific mass (kg/m3 ), cp is the specific heat 
at constant pressure (J/kg.K) and ̇ is the energy generation 
(K/s). 

II. NUMERICAL FORMULATION  

Before starting the numerical formulation of (1)-(2), we 
rearrange these equations as follows, 
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where  (m2/s) is the thermal diffusivity with α=k/cp. 

A. Temporal Discretization 

For Temporal Discretization of the (3) and (4) will be used 
the Crank-Nicolson Method [8], as follows, 
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B. Spatial Discretization 

Following the formulation, the Spatial Discretization using 
High-Order Finite Difference Method for internal nodes will be 
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realized according to the following (i.e. the same principle used 
in [8]). 

1) Internal nodes  
In the internal nodes of the computational mesh, the 

following fourth-order central finite differences were used to 
discretize the first and second order partial derivatives, 
respectively [7-9], 
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which when replaced in (5) and (6), obtain the expressions, 
for cylindrical and spherical coordinates, respectively, 
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2) Nodes distant Δr of the boundary 

For discretization of nodes near the boundary it is not 
possible to use (7) and (8), for example, a node at a distance Δr 
from the boundary will not have two nodes to its left. Thus, for 
these nodes (5) and (6) will be used to discretize the following 
second order central finite difference, 
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and thus when applying (11) and (12) in (5) and (6), we 
result in, 
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In summary, (9) and (13) construct the linear system that 
solves the problem governed by (5) (cylindrical coordinates) 
and (10) and (14) solve the problem governed by (6) (spherical 
coordinates). 

III. NUMERICAL APPLICATIONS 

Linear systems are set, using (9) and (13) for cylindrical 
coordinates and (10) and (14) for spherical coordinates, and 
solved using Fortran. The values of temperature in all nodes of 
the computational mesh were constructed in predetermined 
domains. In both applications it was considered that 0.5r 1, 
0t1,  =cp=α=1 and vr=1. 

1) Application 1. 
The exact solution proposed is given by T(r,t)=er+t. From 

(3) and (4) we obtain, in cylindrical and spherical coordinates, 
respectively, 



Engineering, Technology & Applied Science Research Vol. 8, No. 1, 2018, 2389-2392 2391  
  

www.etasr.com Assis and Romao: Numerical Simulation of 1D Unsteady Heat Conduction-Convection in Spherical … 
 







   




r
vecq r

tr
p 1  







   




r
vecq r

tr
p

2
1  

By the variation of Δr and Δt, the influence of the temporal 
and spatial refinements was studied, by comparing the results 
of the numerical solutions and the exact solution, as shown in 
Tables I and II. What can be noticed in Tables I and II is that 
with the refinement in space and time, the numerical precision 
improves with each greater refinement, as expected. In order to 
show the numerical efficiency of the proposed formulation, and 
remembering that in many cases numerical formulations are 
not very efficient in cases of highly convective problems, Table 
III presents, the numerical precision for some values of vr for 
the two types of refinements. It is clear that for the vr values 
adopted, the formulation continues to have excellent numerical 
precision. 

TABLE I.  ERRORS FOR DIFFERENT VALUES OF VARIATION IN SPACE AND 
TIME IN CYLINDRICAL COORDINATES, APPLICATION 1 

t 
r 10-1 510-2 210-2 10-2 10-3

510-2 1.56E-04 4.33E-05 1.19E-05 7.77E-06 6.85E-06 
2.510-2 1.50E-04 3.78E-05 6.36E-06 1.87E-06 4.68E-07 

10-2 1.50E-04 3.75E-05 6.00E-06 1.51E-06 2.46E-08 
510-3 1.50E-04 3.75E-05 6.00E-06 1.49E-06 1.56E-08 

 

TABLE II.  ERRORS FOR DIFFERENT VALUES OF VARIATION IN SPACE AND 
TIME IN SPHERICAL COORDINATES, APPLICATION 1 

t 
r 10-1 510-2 210-2 10-2 10-3

510-2 1.67E-04 5.28E-05 2.15E-05 1.80E-05 1.70E-05 
2.510-2 1.53E-04 3.88E-05 7.00E-06 2.47E-06 1.12E-06 

10-2 1.52E-04 3.79E-05 6.09E-06 1.54E-06 3.97E-08 
510-3 1.52E-04 3.79E-05 6.07E-06 1.52E-06 1.67E-08 

TABLE III.  ERRORS FOR DIFFERENT VALUES OF Vr, APPLICATION 1 

vr 
r=510-2 and t=10-1 r=510-3 and t=10-3 

Cylindrical Spherical Cylindrical Spherical 
0.1 1.62E-04 1.71E-04 1.62E-08 1.71E-08 
0.5 1.55E-04 1.69E-04 1.59E-08 1.69E-08 
1 1.56E-04 1.67E-04 1.56E-08 1.67E-08 
2 1.48E-04 1.61E-04 1.49E-08 1.61E-08 
5 1.22E-04 1.36E-04 1.23E-08 1.39E-08 
10 7.32E-05 8.90E-05 7.40E-09 9.10E-09 
20 5.49E-05 4.56E-05 1.43E-08 1.34E-08 

 
2) Application 2. 

The exact solution proposed is given by T(r,t) = sin(2(r + 
t)). From (3) and (4) we obtain, in cylindrical and spherical 
coordinates, respectively, 
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By the variation of Δr and Δt, the influence of the temporal 
and spatial refinements was studied, by comparing the results 
of the numerical solutions and the exact solution, as shown in 
Tables IV and V. It is observed from Tables IV and V that the 
numerical precision obtained in Application 2 is extremely 
similar to that presented in Application 1, meaning that the 
formulation proposed in this work behaved well for two types 
of exact solutions, exponential and sine. Table VI presents, for 
the two types of refinements the precision for various values of 
vr. The method’s efficiency is clearly shown as in Application 
1. 

TABLE IV.  ERRORS FOR DIFFERENT VALUES OF VARIATION IN SPACE AND 
TIME IN CYLINDRICAL COORDINATES, APPLICATION 2 

t 
r 10-1 510-2 210-2 10-2 10-3

510-2 2.02E-04 5.11E-05 1.11E-05 7.22E-06 6.46E-06 
2.510-2 1.99E-04 4.96E-05 8.06E-06 2.13E-06 5.17E-07 

10-2 1.99E-04 4.96E-05 7.93E-06 1.99E-06 2.56E-08 
510-3 1.99E-04 4.96E-05 7.93E-06 1.98E-06 2.01E-08 

TABLE V.  ERRORS FOR DIFFERENT VALUES OF VARIATION IN SPACE AND 
TIME IN SPHERICAL COORDINATES, APPLICATION 2 

t 
r 10-1 510-2 210-2 10-2 10-3

510-2 2.14E-04 6.46E-05 2.65E-05 2.30E-05 2.22E-05 
2.510-2 2.02E-04 5.09E-05 8.87E-06 2.96E-06 1.56E-06 

10-2 2.01E-04 5.00E-05 8.02E-06 2.02E-06 4.94E-08 
510-3 2.01E-04 5.00E-05 8.00E-06 2.00E-06 2.14E-08 

TABLE VI.  ERRORS FOR DIFFERENT VALUES OF Vr, APPLICATION 2 

vr 
r=510-2 and t=10-1 r=510-3 and t=10-3 

Cylindrical Spherical Cylindrical Spherical 
0.1 2.05E-04 2.19E-04 2.06E-08 2.17E-08 
0.5 2.03E-04 2.17E-04 2.04E-08 2.16E-08 
1 2.00E-04 2.14E-04 2.01E-08 2.14E-08 
2 1.92E-04 2.07E-04 1.93E-08 2.09E-08 
5 1.57E-04 1.80E-04 1.60E-08 1.83E-08 
10 9.01E-05 1.13E-04 8.74E-09 1.14E-08 
20 1.10E-04 9.82E-05 1.60E-08 1.42E-08 

IV. CONCLUSION 

The Fourth Order Finite Difference Method (FDM) was 
employed to solve the one-dimensional unsteady conduction-
convection equation with energy generation in cylindrical and 
spherical coordinates. Two applications were compared to 
demonstrate the accuracy of the proposed formulation. An 
improvement in result-terms was documented. It was observed 
that both spatial and time refinements were effective, but time 
was found to be more effective. The errors obtained in 
cylindrical and spherical coordinates were low and 
satisfactory, in both applications tested. 
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