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Abstract—This paper describes a digital frequency multiplier for 
a pulse rate. The multiplier is based on the recursive processing 
of the input and output periods and their time differences. 
Special emphasis is devoted to the techniques which provide the 
development of multipliers based on this principle. The circuit is 
defined by two system parameters. One is the ratio of two clock 
frequencies and the other is a division factor of a binary counter. 
The realization of the circuit is described. The region of the 
system parameters for the stable circuit is presented. The 
different aspects of applications and limitations in realization of 
the circuit are considered. All mathematical analyses are made 
using a Z transform approach. It is shown that the circuit can be 
also used in tracking and prediction applications. Computer 
simulations are performed to prove the correctness of the math 
and the whole approach. 

Keywords-frequency multiplier; digital circuit; PLL; FLL 

I. INTRODUCTION 

The Time Recursive Processing (TRP) approach is based 
on the measurement and processing of the input and output 
periods and the time differences between them. As stated in [1-
10], this approach is suitable for the development of different 
kinds of TRP Phase Locked Loops (TRP PLL) and TRP 
Frequency Locked Loops (TRP FLL), which possess some new 
additional properties in comparison to the classic PLL and 
FLL. Due to these new properties, the development of new 
kinds of circuits and applications is provided. The classic PLL 
and FLL might be roughly divided into analog, hybrid and 
digital ones. All of them are frequency based systems, their 
frequency and phase are physically interconnected with time. 
Due to this close interdependence, new kind of TRP circuits 
can be described using the period instead of the frequency and 
changing the phase by the time difference between the input 
and output signals. In order to describe TRP circuits, recursive 
equations, in form of linear discrete system, are used, providing 
a new approach to description, analysis, realization and 
applications. Unlike the classic PLL, which generates the 
output signal always in phase with the input signal, TRP PLL is 
able to provide very precise control time and phase shifting [1]. 
Power time shifters are further described in [2, 3]. The 
technique used for the realization of TRP PLL and TRP FLL is 
applied for the realization of frequency synthesizers in [4]. The 

applications of TRP PLL and TRP FLL for noise rejection are 
described in [5-7]. A wide range of tracking and prediction 
applications is described in [5, 6, 8]. Most of the algorithms 
described in [1-10] are suitable for usage in a software form. 
All electronics TRP applications can be realized in a software 
form that can be applied anywhere. All that is necessary is to 
determine the corresponding analogy between TRP electronics 
variables and the corresponding ones, relating to another field. 
Such a software predictor is described in [9]. Very complex 
systems, consisting of a lot of subsystems, can also function as 
a FLL, whose realization is based on the same TRP technique 
[10]. It is well known that a frequency multiplier can be 
realized by classic PLL or FLL, just by using a counter in a 
feedback connection. The factor of frequency multiplication, in 
such solutions, is equal to the division factor of the counter. In 
this article the mentioned principle of the frequency 
multiplication is applied to one suitable TRP PLL model. The 
analysis specifics in the realization and application of this 
approach are presented. The results obtained can be applied to 
any type of  TRP PLL or TRP FLL. 

II. MATHEMATICAL DESCRIPTION OF THE CIRCUIT 

One general case of the time relation between an input 
signal Sin and an output signal Sop of the circuit is shown in 
Figure 1. The periods TI0, TI1,….TIk, TIk+1, and TO0, 
TO1,….TOk, TOk+1, as well as the time differences 0, 1, 
2…..k, k+1, occur at discrete times respectively t0, t1, t2,…..tk, 
tk+1. The discrete times t0, t1, t2,….tk, tk+1 are defined by the 
falling edges of the pulses of Sop in Figure 1. Note that, unlike 
the classic PLL, all variables are distributed in time in Figure 1. 
The natural recursive relation (1), between the variables, yields 
from Figure 1. It was supposed that the time difference  is 
positive if the input signal leads the output signal. 
Correspondingly, in case that the output signal leads, time 
difference  will take the negative value through the analysis. 
Let us start analyzing the main algorithm of the circuit which is 
presented by (2), where m and q are the system parameters. We 
will see later on that the part TOk+1=TIk+mk+1 of (2) represents 
TRP PLL for its self. If TRP PLL is in the stable state, the 
output TO is equal to the input TI. The parameter q in (2) 
represents the division factor, which can be, generally, less or 
greater than one. The idea is to generate the output 



Engineering, Technology & Applied Science Research Vol. 7, No. 6, 2017, 2104-2108 2105  
  

www.etasr.com Perisic et al.: A Frequency Multiplier Based on Time Recursive Processing 
 

period/frequency which is q times less/greater, so that after 
division by q, the circuit generates the output period which is 
equal to the input period. It is expected, guided by the known 
principles in the realization of the frequency multipliers by the 
conventional PLL, that the  period/frequency before the 
division should be q times less/greater than the input 
period/frequency. However, the circuit does not behave 
according to the expectations. The following analysis will 
discover the proper functioning way of the circuit, described by 
(2), as well as the techniques which will enable the circuit to 
function as a frequency multiplier.  
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Fig. 1.  Time relations between all variables of the circuit 

According to (1) and (2), the circuit has two output 
variables, which depend on TIk. The output variables are 
(k+1)=f[TI(k)] and TO(k+1)=f[TI(k)]. Note that, because of 
simplicity, TO(k), TI(k) and (k) are denoted in the article as 
TOk, TIk and k. It is now necessary to find out the Z transform 
of the output variables (k+1) and TO(k+1) in order to analyze 
the properties of the circuit described. The Z transform of (1) 
and (2) are given by (3) and (4) respectively. Time constants 
TO0 and 0 are the initial values of the output variables TO(k) 
and (k), which appear at discrete time t0 = 0. 
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Calculating (z) from (3) and changing it into (4), it can be 
found out: 
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In the same way, changing TO(z) from (5) to (3), can be 
calculated: 
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Two transfer functions, presented by (7) and (8), describe 
the output variables of the circuit in dependence on the input 
period. They are defined from (5) and (6) respectively. 
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Step analysis will discover the properties of the circuit 
described. Let us suppose that the step function, 
TI(k)=TI=const., is applied to the input. If we change the Z 
transforms TI(z)=TI·z/(z-1) into (5) and (6), we will get the Z 
transform of the output variables for this input. Changing TI(z) 
into (5) and using the final value theorem, it is possible to find 
the final value of the output period in the time domain as 
TO=lim[TO(k)] if k, using TO(z), as shown in (9). 
Applying (9), TO is calculated and shown in (10). To 
complete the information about the system properties, it is 
necessary to determine ∞, i.e. the final value of (k). If TI(z) 
are substituted into (6), using the final value theorem in the 
same way like for TO, ∞ can be determined using (11). 
Applying (11), ∞ is calculated and shown in (12). 

1lim[( 1) ( )]zTO z TO z       (9) 

lim[ ( )]kTO TO k TI      (10) 

1lim ( ) lim[( 1) ( )]k zk z z          (11) 

( 1) /TI q m        (12) 

The expressions (10) and (12) are valued only if the circuit 
is the stable system i.e. if |z1|<1 and |z2|<1, where z1 and z2 are 
the poles of the transfer function HTO(z) or H(z), given by (7) 
and (8). Since z1=0, and z2 =1-m/q, it yields that the circuit is 
the stable system if (13) is satisfied. According to (10) and 
(12), it follows that the described circuit possesses the 
properties of a PLL. This conclusion comes out from the facts 
that the output period TO, for the stable system, equalizes the 
input period and that the time difference  does not depend on 
the initial conditions 0 and TO0. 

0 2m q       (13)  

III. REALIZATION OF THE MULTIPLIER  

Looking at (10), we can notice that regardless of the 
counter in feedback connection, the output period TO is equal 
to the input period TI if the circuit reaches the stable state. The 
expected frequency multiplication is not performed, because 
the main algorithm, given by (2), compensated the influence of 
the division factor q to the output period TO. However, the 
influence of q is made on the final value of time difference ∞, 
see (12), and on the region of the parameter m in (13). Due to 
this influence, the region of m, for the stable system is 
enlarged. The region of the parameter for the stable system, 
according to (13), is presented in Figure 2. 

 

 
Fig. 2.  The circuit is stable for the shaded region of parameters m and q. 
The circuit functions as a classic PLL for q=1. 
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Note that, according to (12), if q=1 then ∞ = 0. The circuit 
functions as classic PLL. If q=1, it means that there is no 
counter in feedback connection. Let us first consider the 
realization of the circuit for q=1. Changing q=1 and m=fm/fc 
into (2), where fm and fc are the clock frequencies of clock 
signals Sm and Sc, (2) turns into (14). According to (14), k+1 is 
measured by the clock period tm=1/fm, TIk is measured by the 
clock period tc=1/fc and TOk+1 is generated by the clock period 
tc=1/fc. The principal scheme of the circuit, corresponding to 
(14), is shown in Figure 3. The circuit consists of Recursive 
Calculation Module (RCM) and Programmable Period 
Generator (PPG). RCM calculates TOk+1 and PPG generates 
the output period at the next step. The realization of RCM, 
according to (14), can be easily performed using the technique 
described in [1-10]. 

1 1mk k kc c
f f TI fTO         (14) 

 

 
Fig. 3.  The principal scheme of the circuit for q=1 

PPG was described in details through [1-10], but in order to 
explain the development of the multiplier, it is now necessary 
to remember the general principles of its functioning. When the 
calculated TOk+1 is entered as a binary word TObk+1 from RCM 
to PPG, PPG will count down pulses of clock signal Sc as long 
as an up-down counter, incorporated in PPG, reaches zero. In 
that moment PPG generates the output pulse of Sop which is, at 
the same time, used to enter the new binary word TObk+1, 
representing the next output period TOk+1. After that, the 
described counting down, restarts and the process is 
continuously repeated. The result of this processing is the 
constant generation of pulses of Sop. The period of Sop is 
TO=TOdˑtc, where TOd is the decimal value of TOb. 

Let us now suppose that the frequency of clock Sc is qc 
times greater. According to the previous explanation of the way 
of PPG functioning, it is obvious that the counting down would 
be qc times faster and the output period will be qc times 
decreased, because the new TO=TOdˑtc/qc. In other words, we 
would get the output frequency, which is qc times greater than 
the input frequency. On the other hand, this would disrupt and 
destabilize an established mode of circuit functioning, because 
the expected output period which is fed into RCM, would be qc 
times decreased. To escape this disturbance at the input of 
RCM, it is necessary only to incorporate a counter in feedback 
connection whose division factor is qc. At the output of the 
counter, the output period would be the expected one, just like 
in case of the circuit, shown in Figure 3, which corresponds to 
the case q=1. In other words, the influence of the increased 
clock frequency and the affect of the counter in feedback 
connection would compensate each other. In this way, the 
additional part of the circuit, outside of RCM, increases the 
output frequency qc times and immediately decreases it also qc 
times, providing the frequency multiplication of the input 
frequency by qc, at the output of PPG. Due to fact that the 

additional part of circuit is outside of RCM, it does not obstruct 
the calculation in accordance with the main algorithm. It is now 
necessary to explain how it is possible to realize the described 
solution practically. The necessary additions, in comparison to 
the circuit presented in Figure 3, can be seen at the principle 
scheme of multiplier, shown in Figure 4. To realize the 
described principle of the frequency multiplication it is 
necessary to memorize the binary form of the current output 
period TObk in a register "Reg". Binary form TObk will be 
taken by PPG qc times during the calculation of the next output 
period TObk+1. Whenever PPG generates an output pulse of 
Sopq, its trailing edge is differentiated. New generated pulse is 
fed to input "Load" of PPG over OR gate and it is used for the 
reentering of TObk into PPG, providing the continuously 
generation of pulse rate Sopq, whose frequency is qc times 
greater than an input frequency of Sin. After qc pulses of Sopq 
are generated, a trailing edge of Sopc will appear at the output 
of the counter. This trailing edge is differentiated and new 
generated pulse is used to preset the next binary form of the 
output period TObk+1 into register and into PPG, 
simultaneously. The binary word TObk+1 will be used to 
generate next qc pulses of Sopq. Finally, in order to adapt Sopc 
to RCM, the pulses of Sopc are narrowed by monostable 
multivibrator MM. After the modification shown in Figure 4 is 
made, in comparison with the principal scheme shown in 
Figure 3, a new model of the principal scheme of the multiplier 
is shown in Figure 5. The modifications are made inside the 
PPG to compensate the effects of the counter in the feedback 
connection. Note that RCM modules in Figure 3 and in Figure 
5 function completely in the same way, providing that the same 
input signal Sin is fed into them, so that most of the additional 
parts in Figure 4, together with the existing PPG, can be 
considered as a new expanded PPG (Ex-PPG), shown in Figure 
5. Accordingly, signal Sop shown in Figure 3, is identical to 
signal Sop, shown in Figure 5. 

 

 
Fig. 4.  The principal scheme of the multiplier. The multiplication factor is 
qc. 

 
Fig. 5.  The simplified principal scheme of the multiplier with Ex-PPG and 
a counter in the feedback connection. The multiplication factor is qc. 

One eight bit multiplier was realized with the standard 
integrated circuits for q=1 and m=1 (fm=fc). The multiplication 
factor, related to Ex-PPG, is qc=10. The input period is the step 
function TI=1ms, corresponding to the frequency of 1kHz. The 
clock frequencies fc=fm=30 kHz, qc·fc=300 kHz so that the ratio 
will be TI/tc=30. The oscilloscope picture of the voltage 
waveforms, shown in Figure 6, was taken when the multiplier 
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was in the stable state. The chosen waveforms correspond to 
the signals Sin, Sopq, Sopc and Sop, shown in Figure 5. In 
accordance with the chosen parameters, the multiplier functions 
as classic PLL, striving to reduce the time difference to zero. 
Due to the fact that TI/tc=30, the reduction is rather successful. 
The input and output periods are equaled and the time 
difference between the signals Sin and Sop is zero in Figure 6. 
However, at the output of Ex-PPG, signal Sopq is generated, 
whose frequency is 10kHz, i.e. it is ten times greater than the 
input frequency of 1kHz. The function of monostable 
multivibrator MM is also shown by signal Sop in Figure 6. 
Although the generation of the multiplied frequency was 
performed inside Ex-PPG, the generation of Sopq was 
controlled by the closed loop system and the multiplier 
possesses all properties of described TRP-PLL. 

 

 
Fig. 6.  The oscilloscope picture of the multiplier voltage waveforms for 
q=1, m=1 (fc=fm=30 kHz), qc=10 and TI=1ms (frequency of 1kHz). 

IV. OTHER PROPERTIES OF THE CIRCUIT  

Other circuit’s properties are equally important either for 
the frequency multipliers or for other applications. To analyze 
them, it is necessary to simulate the functioning of the circuit 
for different practical situations. Besides the study of the new 
properties, the simulations are to enable better insight into the 
procedure and into the physical meaning of the variables 
described. At last, they are to prove the correctness of the 
previous analysis. All discrete values in simulations were 
merged to form continuous curves. All variables in the 
following diagrams were presented in time units, which can be, 
sec, msec or any other, providing that the same time units are 
used for all time variables (TI, TO, and ). It was more suitable 
to use just “time unit” or abbreviated “t.u.” in the text and to 
omit the indication “t.u.” in diagrams. All simulations were 
conducted in Matlab, using (1) and (2). 

Let us first simulate the functioning of the circuit for the 
step input. The locking procedure of the circuit, for the step 
input, is considered for three cases in Figure 7. The step input 
is TI = 10 t.u. The parameters m and q are chosen carefully in 
order to demonstrate the properties of the circuit. All values of 
m and q, as well as the values of the initial conditions TO0 and 
0 are presented in Figure 7. In Figure 7a can be seen that for 
any value of parameter m satisfying (13), the output period 
tends to the input period, but the transition time depends on the 
values of m and q. Note that if m=q (cases Nr. 1 and Nr. 2), the 
stable state is reached in two steps only. For all of three cases, 
the calculation of ∞ agrees with ∞ which can be seen on the 
simulated curves. According to (12), for case Nr. 1: 1∞=TIˑ(q-

1)/m=10ˑ(1-1)/1=0 t.u., for case Nr. 2: 2∞=TIˑ(q-1)/m=10ˑ(2-
1)/2=5 t.u. and for case Nr. 3: 3∞=TIˑ(q-1)/m=10ˑ(6-
1)/4.7=10.63 t.u. The same simulated results can be seen in 
Figure 7a. The agreement between the simulated and calculated 
values, confirms the correctness of the simulation results and 
the correctness of the whole approach. The merged discrete 
values for the case Nr. 1, representing the output variables TO1 
and 1 in Figure 7a, are shown in the real time, in Figure 7b. 
This presentation is given in form of the pulse rates. It reveals 
the real time relations between all input and output variables 
and helps the better understanding of the physical mining of the 
simulated curves. All values, shown in Figure 7b, are taken 
from the simulation results, but they can be also calculated 
manually, step by step, using (1) and (2). According to the 
mathematical analysis and simulation results obtained, the 
circuit functions as classic PLL for m=1 and q=1. These 
parameter values were used for the development of the realized 
multiplier. However, the parameters can take any values 
satisfying (13). 

It is of interest to investigate the ability of the circuit to 
track a ramp function (velocity function). To illustrate this 
ability, let us determine well known velocity error, providing 
that the input period is the ramp function TI(k)=TIV(k)=p·k, 
where p is a time constant. The definition of velocity error is 
KV=lim[TOV(k)-TIV(k)]k→∞. The previous expression can be 
transform into KV=lim {TIv(k)[ HTO(k)-1]}k→∞, where HTO(k) is 
the inverse Z transform of the transfer function HTO(z), given 
by (7). Due to the final value theorem, it is possible to find Kv 
using another expression, given in Z transform form KV = 
lim{(z-1)·TIv(z)·[HTO(z)-1]}z→1. Using the previous expression 
and Z transform of velocity function TIv(z)=Z(p·k)=pz/(z-1)2, 
KV is calculated and presented by (15) according to which, the 
output of the circuit will track the velocity input without an 
error only if q=1. Otherwise the output will track the velocity 
input with the constant error KV. 

(1 ) /Kv p q m       (15) 

 

 
Fig. 7.  (a). The output period tends to the input period and the final value 
of time difference ∞ = TI(q-1)/m. (b). All periods of Sin, Sop and time 
differences k, for the case Nr. 1, are calculated and presented to show the real 
time relation between variables. For this case, m=1 and q=1 (∞=0) and the 
circuit functions as a classic PLL. 
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To complete the information about the system properties, it 
is necessary to determine ∞, i.e. the final value of (k) for q=1. 
If TI(z)=TIv(z) and q=1 are substituted into (6), we will get 
v(z). Using the final value theorem, v∞ is determined and 
shown by (16).  

1lim[( 1) ( )] /V V zz z p m       (16) 

To prove the correctness of the previous analysis, three 
cases of the locking procedure are simulated and presented in 
Figure 8 for the velocity input TIk=(10+2·k) t.u., (p=2 t.u.). 
According to case Nr. 1 in Figure 8a, the circuit is able to track 
the velocity input without an error if q=1. For cases Nr. 2 and 
Nr. 3, q is not equal to one and the circuit tracks the velocity 
input with constant velocity errors. According to (15) the 
velocity errors could be calculated as Kv1=pˑ(1-q)/m=2·(1-
1)/1=0 t.u., Kv2=2·(1-2)/2=-1 t.u. and Kv3=2·(1-6)/4.7=-2.127 
t.u. The same values of Kv1, Kv2, and Kv3 were reached by 
simulation, which are presented in Figure 8c. The time 
differences for these three cases are shown in Figure 8b. For 
the case Nr. 1, q=1 and the final value v1∞ can be calculated 
using (16). According to (16), v1∞=p/m=2/1=2 t.u. The same 
value of v1∞ was calculated by simulation in Figure 8b. For the 
cases Nr. 2 and Nr. 3, q is not equal to one and the time 
differences v2∞ and v3∞ tend to infinity. Regarding the 
obtained results, it is more suitable to choose q=1 for the 
realization of the multiplier. Firstly, the circuit possesses the 
better tracking properties. Secondly, in case that q is not equal 
to one, the requirements for the circuit capacity are stronger in 
the tracking applications, since the variable  can reach 
undesirable large value. Another important conclusion is that 
the circuit is extremely fast if m=q. According to Figures 7 and 
8, if q=m, the circuit takes only two steps to reach the stable 
state (cases Nr. 1 and Nr. 2). 

 

 
Fig. 8.  The transition and stable state of the circuit for the velocity input: 
(a). The output periods track the input periods for three cases. (b). The 
corresponding time differences are presented. For the case Nr. 1 (q=1), 
according to (16), v1∞=p/m=2. (c). The simulated velocity errors are in 
accordance with (15). For the case Nr. 1 (q=1), according to (15), Kv1∞=0. 

V. CONCLUSION  

The description, simulation and presentation of the realized 
multiplier demonstrate a new technique for a practical 

application of TRP circuits. This technique can be applied for 
the realization of frequency multipliers, as a type of upgrade, 
to any type of TRP PLL or TRP FLL. However, the described 
technique can also be used for frequency multiplication, 
independently of TRP circuits, even as an open loop system. 
The presented theoretical approach also provides a 
contribution to the field of the phase shifting based on TRP 
PLL. Some TRP PLL are able to provide different types of 
controlled phase shifting, either by using an outside control 
word or by using the system parameters. It was demonstrated 
in this paper that a division factor of a counter, positioned in a 
feedback connection in a TRP PLL, can also be used for phase 
shifting. As shown, the described circuit is suitable for 
tracking and prediction applications. The proposed circuit 
provides the capability to regulate the transition speed so that 
it can be adapted to specific application. The precision of the 
multiplication is limited by the capacity of the built-in up-
down counters. Higher precision requires greater circuit 
capacity. The maximum factor of the frequency multiplication 
is limited by the speed of the used integrated circuits and by 
the required precision of the multiplication.  
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