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Abstract—In this paper, a new experimental technique for 
measuring Stress Intensity Factor (SIF) and T-stress under mode 
I loading is developed. The expressions of the normal and 
tangential strains close to the crack tip are given using the first 
five terms of the generalized Westergaard formulation. In order 
to accurately determine the SIF and T-stress, the method exploits 
the optimal positioning of a rectangular strain gage rosette near a 
crack tip in mode I. Thus, errors due to the higher order terms of 
the asymptotic expansion are eliminated. Finally, a comparison of 
the analytical results with finite element calculations, for 
different specimen dimensions, is carried out. 
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I. INTRODUCTION  

In Linear Elastic Fracture Mechanics (LEFM), the primary 
focus is generally based upon the Stress Intensity Factor (SIF), 
as a critical parameter, that defines whether an existing crack in 
a specimen grows or not. It is proportional to the first singular 
term of the Williams [1] series expansion. Accurate values of 
SIF are necessary to predict and prevent fracture in 
components. The approach, based on a single parameter, is not 
able to fully interpreting some circumstances that occur. 
Nevertheless, there is experimental evidence [2, 3] showing 
that the constant stress may affect fracture mechanics 
properties. A second parameter, introduced in [4], also plays an 
important role in fracture processes and commonly referred to 
as the T-stress, which is the second non-singular term in the 
Williams [1] series expansion. It represents the stress acting 
parallel to the crack plane and it is independent of the distance 
from the crack tip and proportional to the applied stresses. T-
stress plays a key role in stability of the crack paths and it has a 
significant influence on the shape and the size of the plastic 
zone around the crack tip in ductile materials [5-8]. To 
determine the SIF in cracked specimens, three methods have 
been developed over the last years [9], analytical, numerical 
and experimental. Due to the complexity of the mathematical 
developments, analytical methods are limited to simple 
configurations and therefore one must resort to numerical or 
experimental methods [9]. Experimental techniques, such as 
the compliance [10, 11], photo-elasticity [12-14], caustics [15, 
16] and strain gage [17, 18] methods were developed. Strain 

gage technique is the most common method used to analyse 
stress field. It is relatively simple because it can measure 
surface strains accurately directly within strain gradient zones. 
The use of strain gages to determine the SIF near the crack tip 
has been suggested [19]. Other experimental methods like 
compliance measurements and photo-elasticity were developed 
[20, 21], however, they have some limitations in the case of 
opaque materials. Authors in [17] were the first to develop a 
simple strain gage technique allowing to measure the static 
mode I SIF of isotropic bodies. They identified the region, 
around the crack tip, for accurate measurement of the strains. 
To describe the strain field, the authors used a truncated strain 
series, based upon the generalized Westergaard approach [22]. 
The main advantage of the Dally and Sanford method is that 
only one strain gage is sufficient to determine the mode I SIF, 
which can be placed far away from the crack tip. However, this 
technique requires prior knowledge of the strain representation 
which is a function of the specimen’s geometry and the applied 
loading. On one hand, authors in [23] and [24] extended the 
technique described in [17] to mixed mode SIF and dynamic 
SIF, respectively. On the other hand, authors in [25] and [26] 
used the technique from [17] with static and dynamic cracks, 
respectively. Note that no procedure for selection of radial 
location of strain gage was reported in their works. Authors in 
[27] determined, for some cracked samples, the dynamic SIF in 
isotropic materials by placing strain gages within the 
singularity dominated zone. In [31], authors determined, using 
strain gage technique, mode I SIF by solving large number of 
deterministic equations. Other strain gage methods specifically 
designed for measuring static mode I SIF have been proposed 
in [28] and [29].  

Authors in [28] used two strain gages for measuring the 
mode I SIF. However, the locations (radial distances) of the 
strain gages necessitate, beforehand, the knowledge of the 
plastic zone size. Authors in [29] developed a single strain gage 
technique based on the asymptotic strain expressions. They 
suggested that strain gages could be placed at distances, from 
the crack tip, greater than half the specimen thickness 
measured. Their results showed that the measured normalized 
SIF is a function of the applied loads, the thickness of the 
specimen and the angular position from the crack. Recently, 
another technique was proposed [30], using a three strain gage 
rosette to determine the mixed mode SIF. Placing the rosette 
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near the crack tip but outside the plastic zone was suggested. 
One can conclude from the literature investigation that the 
single strain gage method [17] is widely used compared to 
other strain gage techniques. While some recommendations 
available for radial locations of strain gage were developed in 
[26, 28, 30]. Note that, in their works, also, no procedures were 
mentioned for determination of valid radial locations. The only 
attempts have been made by authors in [32-34] to determine 
the optimal radial locations using single and double strain gage 
cracked configurations. In fact, in their works, they [32, 33] 
presented a new methodology based upon the Finite Element 
Analysis (FEA), supported by theoretical foundations. 
Experimental validation of the methodology for determination 
of maximum permissible strain gage radial location is 
presented in [34]. To numerically and analytically determine 
the T-stress, different methods have been proposed in the 
literature for different types of specimens. Authors in [35, 36] 
showed that the sign and the magnitude of the T-stress 
substantially change the size and shape of the crack tip plastic 
zone. In [37, 38] authors showed that T-stress can be evaluated 
using a modified J-integral based on FEA. In [39] authors have 
studied the stress field around the crack front for a single edge 
specimen subjected to bending and tension to determine the T-
stress in a three-dimensional model. Similar investigation was 
conducted in [40] for center cracked plates. In [41] authors 
have evaluated elasto-dynamic T-stress by using the interaction 
integral from the boundary element solution. In [42] authors 
have developed a stress difference method to evaluate the T-
stress with a crack problem. Authors in [43] determined, using 
FEA, the T-stress and obtained stabilised T-stress distribution 
along ligament. Despite the importance of the T-stress, the 
experimental techniques, dealing with accurate measurement of 
T-stress are very limited in the literature. Inspired by the fact 
that Thermoelastic Stress Analysis (TSA) is an ideal technique 
for the determination of mode I, II and mixed SIF [44, 45], 
authors in [46] have developed a technique to determine the T-
stress and mixed-mode SIF from TSA images. Also, the same 
authors [47] developed a technique to determine the T-stress 
and mode I SIF from Digital Image Correlation (DIC). FE 
simulation was undertaken and good agreement between 
experimental and numerical results was found. They concluded 
that the technique is applicable for fatigue crack studies and T-
stress determinations. An extension was made [48] to the 
method described in [17] to calculate the mode I SIF and T-
stress. They used rectangular rosettes to evaluate the T-stress.  

This work deals with the development of a new method for 
SIF and T-stress determination by using one or two rectangular 
rosettes. As a first step, the formulation of the normal strains, 
close to the crack tip, are given using the first five terms of the 
generalized Westergaard formulation [22]. Then, in a second 
step, these formulations are applied to analytically determine 
the optimum locations for the rectangular rosette to eliminate 
the errors due to higher order terms of the asymptotic 
expansion. 

II. PROBLEM FORMULATION 

In [17] was showed that the region around a crack tip 
(traction free crack faces) can be divided into three zones: very 
near field (zone I), near field (zone II) and far field (zone III) as 

shown in Figure 1. Zone I is closed to the crack tip and the first 
singular term of the strain series is sufficient to represent the 
strain field. However, it is not a valid zone for accurate 
measurement of strains because the stress state is three-
dimensional [49] and the strain field is severely affected by the 
plasticity. Also, errors in measuring the position of the strain 
gage are excessive if they are located very close to the crack 
tip. Zone III is not either suitable for strain calculation because 
a large number of terms in the strain series is required to obtain 
accurate results. Therefore, it was identified [17] that the 
intermediate region (zone II) is favourable and optimum for 
accurate measurement of the strains. In this zone, a singular 
term and a small number of higher order terms correctly 
describe the strain field. 

 

 
Fig. 1.  Different regions around the crack tip. 

A. Multi-term Representation of the Strain Field 

The equations of the near strain field are calculated using 
the generalized Westergaard approach [22]. Thus, the modified 
Airy stress function is given by: 
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For a given problem, these series, in terms of the complex 
variable z = x + iy, contain an infinite number of coefficients 
(A0, A1, A2,….., A∞ ; B0, B1, B2,….., B∞) that can be determined 
using the boundary conditions. The stress components for the 
entire domain are represented in [17] as: 
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By substituting (5) into the plane stress-strain relations: 
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     (6) 

one can obtain the following generalized equations of the 
strain field: 

 
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where f1 =1-, f2 =1+. 

The substitution of the complex functions Z(z) and Y(z), 
from (3) and (4), gives an exact representation of the strain 
field, in the domain, with an infinite number of coefficients An 
and Bm. It is assumed that the strain field in the zone II is 
sufficiently represented, by the five terms series,  n =0, 1, 2 and 
m =0, 1, with the unknown coefficients A0, A1, A2, B0 and B1. 
In this zone, the five terms representation of the strain field is 
expressed as: 
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In these equations, A0, A1, A2, B0 and B1 are determined 
using the specimen geometry and the boundary conditions. The 
coefficients A0 and B0 are proportional, under a mode I loading, 
to the SIF KI and the T-stress, respectively: 

0

0
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B. Five-Term Strain Field Relative to a Rotated Coordinate 
System 

The strains relative to a rotated coordinate system (α, β), 
with its origin at an arbitrary point P(r,) as defined in Figure 
2, are determined from the first strain invariant as: 

xx yy           (13) 

 
Fig. 2.  Strain gage location and orientation [17]. 

The complex form of the strain transformation equations is 
expressed as the following form: 
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For an angle  that coincides with , substituting (7) into 
(14) leads to: 
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(16) 

Replacing n = 0, 1, 2 and m = 0, 1 in (3) and (4) and 
substituting the results for the truncated series into (15) and 
(16) gives: 
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C. Rectangular Strain-rosette Location and Orientation 

Note that it is possible to obtain the data necessary to 
determine KI and T-stress by using single or two rectangular 
rosettes placed in zone II. Equations (17) and (18) are used to 
determine an optimal location of the rosette capable to 
eliminate some higher order terms. Indeed, two approaches will 
be described herein to illustrate the procedure: 1) the single 
rosette is used to provide the data necessary to evaluate KI with 
a three term solution and T-stress with a two term solution; 2) 
the two rosettes are used to provide the data necessary to 
evaluate KI and T-stress with a four term solution. Each of 
these two approaches will be developed below as an individual 
case. 

C.1. Case I: Single Rectangular Rosette 
 

 KI determination with three term solution 

The singular term A0 can be calculated along any direction 
, where the constant term B0 vanishes or can be set to zero by 
superposing rr with an appropriate fraction of . Using (17) 
and (18), it is evident that the constant B0 will vanish if: 
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Considering (19), note that the term A1 can be eliminated 
if: 
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When substituting (20) into (19), one can obtain the 
following relation: 
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This result indicates that a single two element rectangular 
rosette can provide the necessary data to calculate the KI, with a 
three term solution, if  is selected as (20). Substituting (11) 
into (21), the expression of KI can be written as: 

   
1

2 2 2 1 2 1

3 3

rr

I

rE
K

f

        
 

(22) 

where 
1

2

1

1

f

f





 

  

Whatever the type of used material, (22) represents the 
relation between KI and the normal strains rr and . It can be 
measured using two elements of a rectangular rosette, placed in 
zone II, along a radial line drawn from the crack tip  = ±60°. 
For example, when considering an aluminium specimen with 
=1/3, the substitution of f1 =2/3 and =1/2 into (22) gives: 
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One can notice from (23) that, for an aluminium material, a 
single strain gage is sufficient to provide the data necessary to 
evaluate KI value. Note that (23) is the first formula proposed 
by authors in [17].  

 T-stress determination with two term solution 

Generally, the advantage to use a two strain gage rosettes is 
to providing the first two terms of the asymptotic expansion. 
Therefore, it is possible to obtain the necessary data to 
determine the T-stress, from a two-term representation, by 
using the same rectangular rosette placed in zone II along = ± 
/3. It is clear that (17) and (18) subjected to the restriction of 
(20), respectively, lead to:  
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(25) 

If (24) and (25) are truncated after the first two terms, their 
resolutions directly provide the expressions of KI and T-stress. 
In this context, it is important to mention that KI is determined 
from a three term representation because the coefficients 
associated to B0 and A1 are proportional with a same factor of 
proportionality. Therefore, the elimination of one of these two 
terms leads necessarily to the elimination of the other one. If 
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we use a two term description of the strain field around the 
crack tip, the natural elimination of A0 along the considered 
direction can be exploited to determine the T-stress. Now, 
considering (24) and (25), it is evident that the dominant term 
A0 vanishes if: 

   

 

1 2 1 2
1 2

1
0 2

0 1

3
22

1 2

4 4

           6 3 3

            15 3 3
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f f f f

f f

B r A r

B r A r O r

     

  

  

  (26) 

This result indicates that the same rectangular rosette, used 
to calculate KI, can be employed also to provide the data 
necessary to determine the T-stress from a two term 
representation. Substituting (12) into (26), the expression of the 
T-stress becomes: 

   
1

4 1 4 1

3
rrE

T
f

        
  

(27) 

For example, when considering again the aluminium 
material with = 1/3, the substitution of f1 = 2/3 and = 1/2 
into (27) gives: 

 3

2
rrE

T  
 

    
(28) 

The expressions (22) and (27) indicate that, when a 
rectangular rosette is placed in zone II along  = ±60°, the 
measured strains rr and  allow to get the data necessary to 
evaluate KI and T-stress from a representation with three and 
two terms, respectively. 

C.2. Case II: Two rectangular rosettes 
 KI determination with four term solution 

It is possible to obtain the data necessary to determine the 
KI value, from a four term representation, using two rectangular 
strain rosettes placed in two discrete locations in zone II with 
the same value of  = ±60°. The four strain gage 
measurements, rrA, , rrB, , and their respective 
positions rA, rB and A = B are used to solve (21) for A0 and B1. 
Thus, when solving (21), for A0 (or KI) and B1, using data 
obtained from rosettes RA and RB, one can write: 
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where rA = qrB. Equations (29) and (30) can be rewritten as 
the following form: 
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(32) 

where KIA and KIB are calculated from (22).  

These are the SIF evaluated, by the data of RA and RB, 
respectively, using a three term approach. To bring out the 
simplicity of our approach, consider again the aluminium 
specimen (= 1/3, f1 = 2/3 and =1/2). Equations (31) and 
(32) become:  
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(34) 

It is clearly shown from (33) and (34) that, in this case, two 
strain gages are sufficient to evaluate KI and B1 values. Note 
that (33) is the second formula proposed in [17], the authors of 
which used two strain gages, to determine the KI value for an 
aluminium specimen. 

 T-stress determination with four-term solution 

Using the same data obtained with the rosettes RA and RB 
and solving (26), for B0 or T-stress, gives: 
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  (35) 

where the expression of B1 is given in(30) and (32). Note 
that for B1 = 0, the expression in (35) leads to the T-stress 
expression for a three term representation. Equation (37) can be 
rewritten as follows: 
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    (36) 

 where TA and TB are obtained from (27). These are the T-
stresses evaluated by the data, provided by RA and RB, 
respectively, with a two term approach. 
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Again, when considering the aluminium material (= 1/3, 
f1 = 2/3 and = 1/2), (36) can be expressed as: 

   1 1 1 1
2 2 2 2

1 3
2 2

3 5
(37)
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       

Finite element analysis 

Based upon the stress and rectangular strain rosette 
methods described above, we used the FEA with ANSYS 
software to determine the SIF KI and the T-stress under mode I 
loading. 

D. Finite element model 

The standard test using a Central Cracked Plate (CCP) 
specimen is shown in Figure 3. Also, we have reported in the 
same figure the dimensions of the sample. The thickness is 6 
mm in a plane strain state. The width of all samples is 
maintained at w = 50 mm, while, the length of the crack is 
variable. For the calculations, the values of a/w are taken equal 
to 0.2, 0.3 and 0.4. Due to the symmetry, only one half of the 
CCP specimen is considered. In the crack tip region, 24 rows of 
elements were used. Each row consists of iso-parametric 
quadratic triangular mesh with 0.05 mm size. A square root 
singularity in the stress/strain field was produced at the crack 
tip by considering quarter point scaling between the 
circumferential rows of nodes surrounding this region (Figure 
4). The specimen’s material is the aluminum T6- 6082 with the 
mechanical properties: E = 75000 MPa, υ = 0.33 and KIC = 29 
MPa.m1/2. 

 

 
Fig. 3.  Plate specimen with central crack under uniaxial tension. 

 

 
Fig. 4.  Singular elements around the crack tip. 

E. Results and discussion 

We calculated the SIF obtained by placing the gages at 
different radii from 2 mm to 42 mm. The obtained results of the 
SIF KI are shown in Figure 5. However, when using two 
rosettes, KI is very stable regardless of the gage position in 
zone II [17]; i.e. for a/w = 0.2 the distance is less than 16 mm 
and for important ratios of a/w, the distance is up to 30 mm. 
This result is in good agreement with the theory findings 
because the order of the asymptotic expansion in the case of 
two gages is higher. These results are compared to those 
obtained with the displacement method implemented in the FE 
software that we used. Figure 6 shows the variation of the T-
stress as a function of the rectangular rosettes position with 
respect to the crack tip. The results are compared to those 
obtained by the stress method proposed in [43], T = xx - yy 
for  = 0, for the three ratios a/w (0.2, 0.3 and 0.4). One can 
observe that the use of a single rosette requires a position close 
to the crack tip, where the stress field is very unstable. 
However, when the order of the asymptotic expansion is equal 
to 2 (case of two rectangular rosettes), the results become in 
good agreement with those of the stress method. Otherwise, 
singular elements in the FE calculations allow to a better 
approximation of the stress field near the crack tip. Thereby our 
results in terms of T-stress, obtained with the stress method, are 
very stable compared to those of the literature. 

 
Fig. 5.  SIF for (a) a/w = 0.2, (b) a/w = 0.3 and (c) a/w = 0.4. 
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III. CONCLUSION 

In this paper we have proposed a simple method for 
determining the mode I SIF (KI) and T-stress using one or two 
strain gage rosettes. A five term solution was derived from the 
generalized Westergaard stress functions in order to give an 
experimental approach for measuring KI and T-stress. In fact, 
the use of one or two strain gage rosettes, placed in an only one 
orientation, is an important property of this method. Two 
specific cases were considered in reducing the five term theory 
to a simple and practical approach. We have shown, on the one 
hand, that a single rectangular rosette with suitable placement 
and orientation can be used to provide measurement of KI and 
T-stress while accounting for the effect of some higher order 
terms. On the other hand, two strain gage rosettes placed in two 
discrete positions with the same orientation are capable to 
provide the information necessary to evaluate KI and T-stress 
from a four term representation. 

 
Fig. 6.  T-Stress for (a) a/w = 0.2, (b) a/w = 0.3 and (c) a/w = 0.4. 
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