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Abstract—This paper describes a powerful digital time and/or 
phase shifter of pulse rates, based on Time Recursive Processing. 
It can function either as a time shifter or as a phase shifter. The 
circuit can generate precise shifting for a pulse rate with a 
constant input period, but it is also capable to shift a pulse rate 
whose period is a ramp function. Besides that, the shifter can be 
used in tracking and prediction applications. The shifter is 
described by recursive equations as a linear discrete system. All 
mathematical analyses are made using the Z transform. 
Computer simulations are employed to prove the correctness of 
the mathematical analysis. The realization of the shifter is 
described and, to demonstrate the shifter functioning, actual 
oscilloscope screenshots are presented.    
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I. INTRODUCTION  
The field of Time Recursive Processing (TRP) has been 

described in detail in previous works such as [1-9]. The TRP 
approach is based on the measurement and processing of the 
input and output periods and time differences between them. 
Although the first idea was simply to discover a new kind of 
Phase Locked Loop (PLL) and Frequency Locked Loop (FLL), 
it turned out that TRP is suitable for a much broader range of 
applications. Namely, most of the circuits described in [1-9], 
possess some of the properties of either classic Phase Locked 
Loop (PLL) or classic Frequency Locked Loop (FLL). 
However, due to their properties, Time Recursive PLL (TR 
PLL) and Time Recursive FLL (TR FLL) exceed the 
applicability and functionality of classic PLL and FLL, 
improving the efficiency and expanding the scope and diversity 
of their applications. Different applications include phase 
shifting in [1, 2], the development of digital frequency 
synthesizers [3], noise rejection applications [4-6] and a wide 
range of tracking and prediction [4, 5, 7]. All the algorithms 
described are very suitable for usage in a software form, like 
for example a software predictor [8]. Although a very complex 
system, consisting of a lot of subsystems, it can also function as 
a FLL, whose realization is based on the same technique [9]. 

TR PLL and TR FLL represent a completely new approach 
both in theory and in implementation and application. For 
example, the measurement of phase, frequency or amplitude, 
which are used in classic PLL and FLL, are changed by the 

measurement of time, which is much more convenient and 
more precise. Let us remember that the classic PLL tends to 
equalize both frequency and phase between the input and the 
output signals, reducing the phase difference to zero. Unlike 
PLL, classic FLL tends to equalize the frequency, without 
taking care of the phase difference. When FLL reaches the 
stable state, the phase difference between the input and output 
signals depends on the initial variable conditions and, possibly, 
it depends on the system parameters. In other words, the phase 
difference is the random variable. According to [1, 2] some of 
TR PLLs possess the ability to regulate the phase difference by 
either system parameters or by output control. This is an 
important feature of the TR PLL, which can be utilized to 
generate phase differences of any value. Note that the phase 
difference of any PLL cannot depend on the initial conditions 
of the variables. 

In this paper, a new model of a time/phase shifter, based on 
TRP, is described. It provides phase shifting in a band without 
limitations which is controlled by the clock frequency. Under 
some system conditions, it can also provide time shifting 
linearly dependent on the value of an outside control. In 
comparison with the previous phase shifters of this type, 
described in [1, 2], this phase shifter can generate the proper 
shifting even in case the input period is a ramp function.  

II. MATHEMATICAL DESCRIPTION OF THE SHIFTER 
One general case of the time relation between an input 

signal Sin and an output signal Sop of the shifter, is shown in 
Figure 1. The periods TI0, TI1,….TIk, TIk+1, and TO0, 
TO1,….TOk, TOk+1, as well as the time differences 0, 1, 
2…..k, k+1, occur at discrete times respectively t0, t1, t2,…..tk, 
tk+1. The discrete times t0, t1, t2,….tk, tk+1 are defined by the 
falling edges of the pulses of Sop in Figure 1. Note that, unlike 
the classic PLL, all variables are distributed in time in Figure 1. 
The natural recursive relation (1), between the variables, yields 
from Figure 1. It was supposed that the time difference  is 
positive if the output signal leads the input signal. 
Correspondingly, in case that the input signal leads, time 
difference  will take a negative value through the analysis. 
The main algorithm of the circuit is presented in (2), where 
"Tk", as an outside control word, represents a step function and 
"a" and "m" are the system parameters. According to (1) and 
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(2), the circuit has two output variables, which describe its 
behavior: 

                           1k k k kTO TI                              (1) 

                    1 1a kk k kTI T mTO                            (2) 
 

    
Fig. 1.  Time relations between all variables of the circuit. 

The output variables are (k+1) = f[TI(k)] and TO(k+1) = 
f[TI(k)]. Note that, because of simplicity, TO(k), TI(k) and (k) 
are denoted in the article as TOk, TIk and k. It is now necessary 
to find the Z transform of the output variables (k+1) and 
TO(k+1) in order to analyze the properties of the shifter 
described. The Z transform of (1) and (2) are given by 
respectively (3) and (4). Time constants TO0 and 0 are the 
initial values of the output variables TO(k) and (k), which 
appear at discrete time t0 = 0.    

               0( ) ( ) ( ) ( )z z z z TO z TI z                         (3) 
   0 0a( ) ( ) ( ) ( )zTO z zTO TI z T z z z z m                 (4) 

Calculating (z) from (3) and using it into (4), gives: 

0 0z mz z
z z

( ) (z 1)z(a m) a( ) ( )
z(z m 1) z(z m 1)

T TOTO TI     
 

   
   (5) 

In the same way, changing TO(z) from (5) to (3), gives: 

0 0(z) (z )a( ) ( )
(z m 1) (z m 1)

T z m TO zzz TI z
z z

    
  

   
     (6) 

Two transfer functions, presented by (7) and (8), describing 
the output variables of the shifter in dependence on the input 
period, can be defined from respectively (5) and (6). 

                      ( ) z(a m) a( )
( ) z(z m 1)TO

TO zH z
TI z

 
 

 
                   (7) 

                       ( ) a( )
( ) (z m 1)
z zH z

TI z z
 

  
 

                   (8) 

A. Step analyzes of the circuit 
Step analysis will discover under which conditions the 

circuit can possess the properties of a time/phase shifter. 
Providing that the control time function T(k)=T=const., let us 
suppose that a step function, TI(k)=TI=const., is applied to the 
input. If we change the Z transforms T(z) = T·z/(z-1) and TI(z) 
= TI·z/(z-1) into (5) and (6), we will get the Z transform of the 
output variables for this input.  Changing T(z) and TI(z) into  
(5) and using the final value theorem, it is possible to find the 

final value of the output period in the time domain as TO = 
lim TO(k) if k, using TO(z), as shown in (9). Applying (9), 
TO is calculated as shown in (10). To complete the 
information about the system properties, it is necessary to 
determine ∞, i.e. the final value of (k). If T(z) and TI(z)  are 
changed into (6), using the final value theorem in the same way 
like for TO, ∞ can be determined using (11). Applying (11), 
∞ is calculated and shown in (12). 

                       1lim[( 1) ( )]zTO z TO z                         (9) 
                       lim[ ( )]kTO TO k TI                         (10) 
              1lim ( ) lim[( 1) ( )]k zk z z                      (11) 
                       (1 ) / /TI a m T m                              (12) 

The expressions (10) and (12) are valued only if the shifter 
is the stable system i.e. if |z1| < 1 and |z2| < 1, where z1 and z2 
are the poles of the transfer function HTO(z) or H(z), given by 
(7) and (8). Since z1 = 0, and z2 = 1+m, it yields that the shifter 
is the stable system if (13) is satisfied. According to (10) and 
(12), it follows that the described shifter possesses the 
properties of a PLL. This conclusion comes out from the facts 
that the output period TO, for the stable system, equalizes the 
input period and that the time difference  does not depend on 
the initial conditions 0 and TO0. 

                                         2 0m                                  (13) 

B. The time and/or phase shifting 
Looking at (12), we can notice that total value of  

consists of two parts. The first one is TI(1-a)/m. The term (1-
a)/m  indicates the portion of a period TI, or the number of 
periods TI, for which the input pulse rate is phase shifted. 
According to its nature, the first part represents the phase 
shifting. The system stability does not depend on the parameter 
"a", so that the value of either positive or negative phase 
shifting is unlimited. The second part is equal to "-T/m". It 
represents the pure time shifting, which is controlled by "T". It 
can also be ether positive or negative. Since control word "T" 
does not affect on the system stability, this kind of shifting can 
be also unlimited. So, two kinds of shifting can be generated 
simultaneously. But they can be also generated separately. If 
a=1, the first part in (12) does not take part in the shifting. At 
the same time, if control time function T=0, the second part in 
(12) has no effect on the shifting. 

To prove the correctness of the previous analysis, 
simulations of the shifter functioning are presented. At the 
same time, the simulations are employed to enable a further 
insight into the procedure and into the physical meaning of the 
variables described. The simulations are also used to discover 
additional properties and possible efficient applications of the 
shifter. All discrete values in simulations were merged to form 
continuous curves. Note that all variables in the following 
diagrams were presented in time units. The time unit can be, 
sec, msec or any other, but assuming the same time units for 
TI, TO,  and T. It was more suitable to use just “time unit” or 
abbreviated “t.u.” in the text. It was more convenient to omit 
the indication “t.u.” in diagrams. All simulations were made by 
Matlab, using (1) and (2). 



Engineering, Technology & Applied Science Research Vol. 7, No. 3, 2017, 1582-1587 1584  
  

www.etasr.com Perisic and Bojovic: Application of Time Recursive Processing for the Development of a … 
 

Let us first consider the time shifting, taking a=1. The 
locking procedure of the shifter is considered for three cases in 
Figure 2. The input is a step function TI = 10 t.u. The parameter 
"m" and control word "T" are chosen carefully in order to 
demonstrate the different properties of the shifter. All values of 
"m" and "T", as well as the values of the initial conditions TO0 
and 0  are presented in Figure 2. It can be seen in Figure 2a, 
that for any value of "m" satisfying (13), the output period 
tends to the input period, but the transition time depends on the 
value of "m". For case Nr. 2, (m=-1) the shifter is extremely 
fast. It reaches the stable state for only two steps. For case Nr. 
1, (m=-0.85), and case Nr. 3 (m=-1.2), the shifter takes longer 
time to reach the stable state. The conclusion is that the greater 
deviation of parameter "m", with respect to m=-1, provides 
longer transition time of the shifter. Note that for all three 
cases, the calculation of ∞=-T/m agrees with ∞ which can be 
seen on the simulated curves. For instance for case Nr. 2, ∞=-
T/m=-(-3)/-1=-3. The same result can be seen in Figure 2a. 
This agreement confirms the correctness of the simulation 
results and the correctness of the whole approach.  

 

 
Fig. 2.  Time shifting (a=1 for all of three cases): a. The output period 
tends to the input period and the final value of time difference ∞ = -T/m,  b.  
The case Nr. 3, in Figure 2a, is presented in the real time form. All periods of 
Sin, Sop and time differences k are calculated, showing the real time relation 
between them. For this case,  T=0 (∞=0) and the shifter functions as a classic 
PLL.   

The merged discrete values for case Nr. 3, representing the 
output variables TO3 and 3 in Figure 2a, are shown in real 
time, in Figure 2b. This presentation, in forms of pulse rates, 
exhibits the real time relations between all input and output 
variables. It also helps to better understand the physical mining 
of the simulated curves. The calculated values of all variables 
are shown for every step. All values are taken from the 
simulation results, but they can be calculated manually, step by 
step, using (1) and (2). According to the mathematical analyzes 
and simulation results obtained, the shifter functions as classic 

PLL for T=0 and a=1. The negative values of the time 
differences k are shaded in Figure 2b. 

Let us now consider the properties of the circuit in case that 
it functions as the phase shifter. In this case, according to (12),  
T=0 and ∞= TI(1-a)/m. The locking procedure of the shifter is 
simulated for three cases in Figure 3. The input is the step 
function TI = 10 t.u.  All values of "m" and "a", as well as the 
values of the initial conditions TO0 and 0  are presented in 
Figure 3. It can be seen in Figure 3a, that the role of parameter 
"m" is not changed. For any value of parameter "m" satisfying 
(13), the output period tends to the input period, but the 
transition time depends on the value of the parameter "m". For 
case Nr. 2, (m=-1) the shifter reaches the stable state for only 
two steps. The conclusion is the same as in the case of the time 
shifter. The greater deviation of parameter "m", with respect to 
m=-1, provides longer transition time of the shifter. Although 
the parameter "m" affects ∞, it is much more convenient to use 
"a" for the phase shifting. For case Nr. 2, a=1 and 2∞=0, 
regardless of the values of "m". In this case phase shifter 
functions as a classic PLL. For case Nr. 1, a=1.16 (a> 1) and 
1∞=TI(1-a)/m = 2 t.u. The same result for 1∞ can be seen in 
Figure 3b. For case Nr. 3, a=0.75 (a<1) and 3∞=TI(1-a)/m = - 2 
t.u. The same result can be also seen in Figure 3b.  

 
 

 
Fig. 3.  Phase shifting (T=0 for all of three cases) in the function of 
parameters "m" and "a": a. The output period tends to the input period,  b. The 
final value of time difference ∞ = TI(1-a)/m,  c. The final value of the phase 
shifting is Ph∞ =2π·∞/TO∞ [rad] = 2π·(1-a)/m [rad]. 

This agreement confirms the correctness of the simulation 
results and the correctness of the mathematical approach. We 
can now reach the general conclusion about the influence of 
parameter "a" to the phase shifting. If a>1, the phase shifting is 
positive. If however a<1, the phase shifting is negative. Since 
the parameter "a" does not affect the stability of the system, 
both of them, the positive and the negative shifting can be 
unlimited. The only limitation is the capacity of the circuits 
which are built in the shifter. The general expression for the 
phase shifting, for both, the time and the phase shifter, can be 
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expressed as Ph∞ = 2π·∞/TO∞ [rad]. Changing ∞=TI(1-a)/m 
for the phase shifter, and taking in account that for the stable 
shifter TI=TO∞, the expression turns into Ph∞ = 2π·(1-a)/m 
[rad]. The transition state, as well the stable state, for all of 
three cases of the phase shifting are presented in Figure 3c.  
According to the previous expression,  Ph1∞=2π·(1-1.16)/(-
0.8)=1.25 [rad],  Ph2∞=2π·(1-1)/(-1)=0 [rad] and Ph3∞=2π·(1-
0.75)/(-1.25)=-1.25 [rad]. All of calculated results agree with 
the simulated ones, shown in Figure 3c. 

C. The shifting in case when the input is a ramp function 
Besides the described shifting for the case when the input 

period is a step function, the time shifter (a=1) can be used for 
the shifting of an input pulse rate, whose period is a ramp 
function. To illustrate this ability, let us determine the well 
known velocity error, providing that the input period is the 
ramp function TI(k)=TIV(k)=p∙k, where “p” is a time constant. 
The definition of velocity error is KV=lim[TOV(k)-TIV(k)] for 
k→∞. One more convenient expression for velocity error is KV 
= lim TIV(k)[HTO(k)-1] for k→∞, where HTO(k) is the transfer 
function given by (7). Taking a=1 and using the previous 
expression and Z transform of velocity function TI(z)=TIV(z)= 
Z(p·k)=pz/(z-1)2, it can be found out that KV = 0. This means 
that the output of the shifter is capable to track the ramp input, 
without an error.  

In order to consider the shifting abilities of the circuit, let us 
now determine the behaviour of τV(k) for the velocity (ramp) 
input, if k→∞. Using the final value theorem, τV∞=lim τV(k)k→∞ 
is calculated using τV(z) and shown in (14). The expression 
τV(z) is get out by the substitution of TI(z)=TIV(z) in (6) and 
taking a=1. According to (14), τV∞ is the time constant, which 
does not depend on the initial conditions. Besides the 
parameters "m" and "T", τV∞ depends on the time constant "p",  

               1lim[( 1) ( )] ( ) /V V zz z p T m                   (14) 

which is the slope of the ramp input function. It means the time 
shifting of the output pulses can be controlled by the control 
word "T". If T>p, τV∞>0 and the output pulse leads in time, just 
like in Figure 1. If however T<p, τV∞ is negative and the output 
pulse is delayed in time, in comparison with the corresponding 
input pulse. It comes out that if T=p, τV∞ = 0, i.e. the shifter 
functions as classic PLL, reducing the phase difference to zero, 
even for the ramp input function. To check the correctness of 
the obtained results, the simulations of TO(k) and (k) for the 
velocity input TIk=(10+4·k) t.u. are shown in Figure 4. Three 
cases for different parameters “m” and “T” are presented. All 
initial conditions and final values are shown in Figure 4. For all 
of cases in Figure 4a, the output periods track the input periods 
without an error. That means KV = 0, which agrees with the 
previous theoretical conclusion. Note that the shifter takes only 
two steps to reach the stable state for m=-1, regardless of the 
fact that the input is the ramp function. For all cases in Figure 
4b, time differences tends to the time constant "(p-T)/m", given 
by (14), proving the correctness of the mathematical analyses. 
For case Nr. 2, T=p=4 t.u. and according to (14), V2∞ = 0. That 
means the shifter predicts and generates the output period 
which is completely synchronized with the input pulses, even 
for  the case when the input is a ramp function. For case Nr. 1, 

V1∞=(p-T)/m=(4-7.75)/(-0.75)=5 t.u. For case Nr. 3, V3∞=(p-
T)/m=[4-(-2)]/(-1.25)=-4.8 t.u. The calculated results agree 
with the simulated ones, shown in Figure 4b. Cases Nr. 1 and 
Nr. 3 prove that the shifter is able to generate both positive and 
negative shifting of the pulses of a ramp input, depending on 
the parameter "T". For case Nr.1 T>p (V∞>0), the output pulses 
lead for V∞+ in comparison with the input pulses. For the case 
Nr. 3, T<p (V∞ <0), the output pulses are delayed for V∞ in 
comparison with the input pulses. 

 

 
Fig. 4.  The time shifting of the ramp input function (a=1): a. The output 
periods, for all of three cases, track the input periods without an error, Kv=0,  
b. The time shiftings tend to the time differences V∞, given by eq. (14).  

III. REALIZATION OF THE SHIFTER 
According to the results obtained, the optimum value of 

"m" for the shifting applications, is m=-1. Firstly, the shifter is 
the fastest for m=-1 and secondly the realization of the shifter 
is much simpler if m=-1. For some other applications, where it 
is necessary to adapt the locking speed, different values of "m" 
can be required. Taking m=-1, and changing a=fa/fc, where fa 
and fc are the clock frequencies,  (2) turns into (15). According 
to (15), Tk and k+1 are measured by the clock period tc=1/fc, TIk 
is measured by the clock period ta = 1/fa and TOk+1 is generated 
by the clock period tc=1/fc. The principal scheme of the 
realization, corresponding to (15) is shown in Figure 5.  

       1 1c a c k ck k kf TI f T ff TO                     (15) 
                                                       

    
Fig. 5.  The principal scheme of the phase shifter   

The shifter consists of a Recursive Calculation Module 
(RCM) and a Programmable Period Generator (PPG). RCM 
calculates TOk+1 and PPG generates the output period at the 
next step. PPG was described in detail in [1-9]. The realization 
of RCM depends on the type of algorithm, but the realization of 
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RCM according to (15), can be easily performed using the 
technique described in [1-9]. According to the previous 
conclusions, if fa=fc (a=1), the circuit functions as time shifter. 
If however fa is not equal to fc and Tk=0, the circuit functions as 
the phase shifter. One eight bits shifter was realized by 
standard integrated circuits for a=1 (fa=fc), T=0 and m=-1. The 
input period, shown in Figure 6, is the step function TI=1 [ms], 
corresponding to the frequency of 1[kHz]. The clock frequency 
fc=6 [kHz], so that the ratio TI/tc=6. The oscilloscope picture of 
the voltage waveforms, shown in Figure 6, was taken when the 
shifter was in the stable state. In accordance with the chosen 
parameters, the shifter functions as a classic PLL, striving to 
reduce the time difference to zero. However, that is not 
possible because the ratio TI/tc is very small. The ratio TI/tc is 
chosen intentionally small to enable the visibility of ∞+ and ∞- 
and to provide the evidence of the whole physical process. In 
accordance with the chosen parameters, the time difference ∞ 
is changing the sign at every step. If TI/tc increases, the widths 
of ∞+ and ∞- would decrease and tend to zero. It can also be 
seen in Figure 6 that whenever two pulses of Sop occur during 
a period TI, it means that TI > TO, and the coming “∞” is 
negative. If two pulses of Sin comes during a period TO, it 
means that TO > TI, and the coming “∞” is positive. The 
previous explanations, at the same time, contribute to the 
understanding of the principles of the shifter functioning. 

 

 
Fig. 6.  The shifter is in the stable state. It functions as PLL (a=1, m=1, 
T=0). The ratio TI/tc is only about six and the time differences ∞+ and ∞- are 
visible. If TI/tc increases, the time differences tend to zero. 

IV. CONCLUSION 
The description and illustration of the realized shifter 

represent one additional contribution to the shifters described in 
[1, 2]. The presented theoretical approach in whole, also 
represents the contribution to the field of TRP. It was 
demonstrated that besides the processing of the input and 
output periods and the time differences between them, an 
additional control function can take part in the calculation of 
the output period. In dependence on the type of the control 
function, the shifter takes new properties. For instance, it was 
shown that if the additional control function is a step function, 
the shifter is able to provide the proper shifting even in case the 
input period is a ramp function. This example indicates that, 
using this approach, it is possible to develop new additional 
applications of the circuits and systems based on TRP.  

In comparison with the shifters described in [1, 2], this 
shifter provide important advantages consisting of the better 
functionality and the wider applicability. Firstly, unlike the 
mentioned shifters, this time shifter provides both the time 
shifting and the phase shifting. Secondly, the time shifting does 

not depend on the input period, so that the desired value of 
either positive or negative shifting is directly proportional to 
the outside control word. This property significantly facilitates 
its practical realization and its practical usage. Thirdly, this 
shifter can generate either a positive or negative shifting of the 
input pulse signal, even in case the input period is a ramp 
function. This feature provides a much wider field of 
application.  

It was shown that if T = 0, the shifter can function exactly 
as classic PLL, which has already found a number of 
applications. The analysis and simulations showed that this 
phase shifter is extremely fast if m=-1. In this case, the shifter 
takes only two steps to reach the stable state. Changing m in 
range of -2 to 0, it is possible to adapt a transient time of the 
shifter to the required application. The precision of the phase 
shifting can be extremely high. It is limited however by the 
speed of the used integrated circuits, since it depends on 
relation TI/tc. A higher TI/tc relation provides a higher shifting 
resolution. Generally, the shifting band can be as large as 
necessary. However, the capacity of the built-in up-down 
counters must be large enough to satisfy the requirements for 
the shifting band and the shifter resolution. The identity of the 
analytical and simulation results, in every step, proves the 
correctness of the entire theoretical approach, as well as the 
validity of the obtained results. 
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