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ABSTRACT 

Alstonia scholaris plays an important role in tropical ecosystems, contributing to soil conservation and 

carbon sequestration. However, it is susceptible to pest infestations, especially galls caused by a variety of 

factors, which can affect the growth and health of plants. This study employed a deep learning approach to 

classify healthy and gall-affected leaves using CNN with Depthwise Separable Convolution (DSC). A 

dataset consisting of 11,800 leaf images was processed with various augmentation and filtering techniques 

to evaluate their effect on classification performance. The experimental results indicated that the optimized 

filter achieved the highest accuracy (99.3%) in differentiating between healthy leaves and leaves affected 

by galls. The CNN model utilizing DSC was selected for its ability to significantly decrease computational 

complexity while maintaining classification accuracy, making it suitable for efficient image analysis jobs. 

This study shows that deep learning could function as an effective option for the early detection of plant 

diseases. Future investigations should examine transfer learning and multispectral imaging methods to 

improve model adaptability and classification precision. 
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I. INTRODUCTION  

The leaves of Alstonia scholaris, commonly referred to as 
the pulai tree, are essential for tropical ecosystems [1]. Alstonia 
scholaris, a tree characterized by its erect greenish stems and 
white blossoms, is recognized by its elliptical leaves [2]. Bark 
comprises active chemicals, including alkaloids and flavonoids, 
which exhibit antiparasitic, anti-inflammatory, and 

immunostimulatory activities. In addition, its wood fibers are 
highly suitable for producing high-quality paper, offering 
excellent ink absorption and texture [3]. Pulai trees also 
facilitate the absorption of carbon dioxide from the atmosphere, 
making them significant contributors in the fight against 
climate change. Its leaves demonstrate significant antioxidant 
activity, aiding in the protection of cells from oxidative stress 
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and premature aging [4]. However, the tree is vulnerable to 
environmental changes, as climate change and declining 
circumstances have increased the risk of pests and diseases, 
particularly leaf galls. Although typically not lethal, severe gall 
infestations can impede tree development and photosynthesis, 
compromising its overall vitality [5]. This presents a major 
concern in agriculture and forestry, where gall-induced damage 
can lead to economic losses. Leaf galls have been extensively 
studied to understand their causes, consequences, and 
management strategies. For instance, in [6], Paurosylla 
tuberculata was found to be the primary insect generating galls 
on Alstonia scholaris leaves. Gall assaults can hinder the 
development of six-month-old seedlings and inflict obvious 
damage on the plants [7]. In recent years, deep learning and 
computer vision have shown great promise in the identification 
of plant diseases. For galls on Cordia leaves, several models 
were tested in [8], including modified Yolov4, Yolov5, 
Yolov7, and SSD, achieving good levels of accuracy. In [9], 
Recurrent Neural Networks (RNN) were used to detect galls on 
various plants. Using these technologies to build models that 
can distinguish between healthy and sick leaves can improve 
pest control using early identification, including those 
endangering the health of the pulai tree.  

Improving the accuracy of digital image analysis-based 
plant disease diagnosis is based mainly on image preprocessing 
to improve segmentation, feature extraction, and background 
elimination. Such methods minimize noise that can interfere 
with categorization while emphasizing significant portions of 
leaf pictures [10]. For instance, in [11], image preprocessing 
methods, including scaling and pixel normalization on a 
Kaggle dataset with 536 classes, helped achieve a high 
validation accuracy of 95% in recognizing potato leaf 
disorders. Research on maize plant disease detection has 
emphasized the need for techniques such as neighborhood 
average, median filtering, and spatial low-pass filtering to help 
isolate impacted areas on leaves and increase the accuracy of 
Support Vector Machine (SVM) models [12]. 

This study sought to explore key questions: How effective 
is a Convolutional Neural Network (CNN) with Depthwise 
Separable Convolution (DSC) in identifying gall-infected 
leaves? What image preprocessing techniques are most 
effective in improving the accuracy of gall detection? The 
novelty of this research is its specific focus on using a deep 
learning-based CNN with DSC, a method that has received 
little attention in previous research. Through this approach, the 
study aims to contribute meaningfully to the development of 
automated plant disease detection systems, particularly to 
support the conservation and productivity of pulai plants. 

II. METHODS 

This study presents a structured approach to analyze and 
classify Alstonia scholaris leaf images using image processing. 
Figure 1 shows a flowchart of this study, which used 11,800 
high-resolution images labeled as galled or healthy. 

A. Dataset Acquisition 

Leaf images were captured using a Vivo smartphone at 
3072×4096 resolution. These images were then preprocessed 
through cropping and segmentation, as shown in Figure 2, to 

isolate the Region of Interest (ROI) and enhance image quality 
for analysis. 

 

 

Fig. 1.  Flowchart of the proposed method. 

 
Fig. 2.  Region of Interest (RoI) of healthy and gall leaves. 

(a) 

(b) 

Fig. 3.  Dataset sample: (a) health leaves, (b) galls leaves. 

A total of 2,226 images were collected, evenly divided 
between healthy and gall-affected leaves. This balanced dataset 
supports reliable model training and evaluation. Figure 3 shows 
sample images of both categories. To enhance training data and 
prevent overfitting, various image augmentation techniques 
were applied using Keras' Image Data Generator. These 
included rotation, shifting, shearing, zooming, and flipping, 
which helped the model learn from diverse leaf variations and 
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adapt to real-world conditions. As a result, the dataset was 
expanded to 11,800 images, evenly divided between healthy 
and gall-affected leaves.  

B. Image Processing 

After collection, the images were stored and enhanced 
using filters such as Blur, Contour, Edge enhancement, 
Grayscale, and Sharpening. These filters help highlight 
important features, making the images clearer and easier for the 
system to process in the next stage. 

 The Blur filter is used to smooth an image by 
smoothing out changes in the intensity of surrounding 
pixels [13]. One such method, used in this experiment, 
is Gaussian, which uses the Gaussian function to 
smooth out sharp changes in an image. The formula 
used in Gaussian blur is: 

���, �� = �
	
�� 
������

���     (1) 

where ���, ��  is the Gaussian function implemented on 
pixel �x, y�, and � is the standard deviation obtained from 
the Gaussian distribution, controlling the blur level. 

 Contour filter: To bring out the edges or outlines in an 
image, a contour filter helps by picking up on 
noticeable changes in brightness between neighboring 
pixels [14, 15]. One commonly used method for this is 
the Sobel filter, which works by applying a special 
kind of mathematical operation, called convolution, to 
measure how the brightness shifts both side-to-side and 
up-and-down. The Sobel Kernel was used to detect 
these contours: 

��  =  �−1 0 1−2 0 2−1 0 1�,   ��  =  �−1 −2 −10 0 01 2 1 � (2) 

The gradient magnitude is calculated as follows: 

� =  C�	 + C�	    (3) 

where ��  and ��  represent the slopes in the horizontal and 

vertical directions, respectively. � is the gradient magnitude 
value that indicates the strength of intensity variations at the 
image's edges. 

 Edge enhancement increases the contrast in places with 
strong intensity variations [16], thus improving edges 
in an image. The Laplacian filter is one of the 
techniques applied in this experiment, which detects 
intensity variations using the Laplacian operator: 

∇	 $��, ��  = {&�'}
{&�� } +  {&�'}

{&��}   (4) 

where ∇	 $��, �� is the second differential operator applied 
in the edge-enhanced filter to emphasize picture pixel 

intensity changes, and 
{&�'}
{&�� } and 

{&�'}
{&��} are the second partial 

derivative about the horizontal ��� and vertical ���  axes, 
respectively. Detecting and emphasizing the edges of an 
object depends much on this calculation, which seeks to 
measure the change in intensity in an image area. 

 A grayscale filter converts images into black-and-white 
images. This filter removes color information and 
retains only the pixel intensities [17]. The RGB to 
grayscale conversion formula was: 

) =  0.2989- +  0.5870� +  0.11401  (5) 

where )  is the grayscale intensity value, and -, � , and 1 
are the intensity values of the red, green, and blue 
components in the image, respectively. 

 A Sharpen filter is used to increase the sharpness of an 
image by clarifying details and increasing the contrast 
between adjacent pixels [18]. One such method used 
was unsharp masking, using the following formula for 
3×3 kernel sharpening: 

� 0 −1 0−1 5 −10 −1 0 �    (6) 

This kernel enhances the center pixel and reduces the 
influence of surrounding pixels to produce a sharper image. 
The center pixel value is amplified with a large positive 
weight, which is 5, while the surrounding pixels are given a 
negative weight (-1) to produce a sharpening effect. Thus, 
the features in the image become clearer and easier to 
recognize. In image processing, this filter is extensively 
applied to improve the visibility of significant features 
before additional studies, such as image segmentation or 
pattern recognition. 

C. Image Classification 

A CNN with DSC was used to classify the data. This 
approach was selected for its ability to automatically extract 
important elements from images, thus eliminating the 
requirement for human feature extraction methods [19]. The 
CNN structure, shown in Figure 4, uses DSC to handle image 
data. This begins with an input image of 150×150 with three 
color channels passing through a sequence of 
SeparableConv2D layers with rising filter sizes (32, 64, and 
128), each followed by a max pooling layer to downplay the 
spatial dimensions using 10 epochs. During training, a batch 
size of 32 was employed to balance model convergence speed 
and memory efficiency, which is appropriate given the input 
size and model complexity.  

 

 

Fig. 4.  Flowchart of the proposed method. 
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Following feature extraction, the data was flattened into a 
1D vector and subjected to ReLU activation through a 128-
neuron dense layer. To avoid overfitting, a Dropout layer 
with a rate of 0.5 was added before the final output layer, 
which used softmax activation to produce class 
probabilities. 

D. Evaluation Analysis 

In this stage, confusion matrix results and related metrics 
were used to measure the accuracy of each algorithm. This 
helps visualize how many data points are correctly or 
incorrectly classified. By using the test and score widget, the 
performance of the three algorithms was evaluated through key 
metrics, such as accuracy, precision, recall, and F1 score. 
Classification Accuracy (CA), one of the most common metrics 
in machine learning, shows the percentage of data correctly 
predicted by the model [20]: 

�2 =  34567
34537567564    (7) 

In this context, 89  and 8:  refer to correctly predicted 
outcomes for positive and negative classes, respectively. ;9 
are cases wrongly predicted as positive, while ;: are actual 
positives incorrectly predicted as negative. These values help 
determine the model's performance. 

Precision measures how accurate the model is when 
predicting positive results [20]:  

9<
=>?>@A =  34
34564    (8) 

Recall shows how well the model can detect all actual 
positive cases [20], calculated by: 

-
=BCC =  34
34567    (9) 

The F1 score combines precision and recall into one metric, 
offering a balanced measure of a model's classification 
performance. This metric is especially useful when dealing 
with uneven class distributions [21], and is calculated as 
follows:  

;1 = 2 × 4EFGHIHJK ×LFGMNN
4EFGHIHJK 5 LFGMNN   (10) 

III. RESULTS AND DISCUSSION 

This study used image processing to highlight differences 
between healthy and diseased leaves. Filters enhanced key 
features, helping to identify them more easily, as shown in 
Figure 5.  

The original image achieved high accuracy (0.989 and 
0.987) with balanced precision and recall. The Blur filter 
maintained strong performance, with an F1 score of 0.992 and 
a slight increase in accuracy. The Contour filter decreased the 
recall of class "a" (0.942) and its F1 score (0.961), while class 
"b" remained high (0.992). The Edge enhancement filter 
slightly decreased the recall but increased the precision, 
keeping the F1 score at 0.991. The Grayscale filter decreased 
accuracy the most (0.968 and 0.969), possibly due to loss of 
color information. In contrast, the Sharpen filter increased 
precision and accuracy the most (0.993 and 0.994), indicating 
the best classification performance. These findings are in line 

with [22], which highlighted the importance of feature 
preservation in plant disease detection based on two-way 
residual dense layers. In this module, a separable depth 
convolution was introduced, which reduced the amount of 
parameter calculation and achieved a performance of over 
98%. 

 

 
Fig. 5.  Image filtering results: (a) original, (b) blur, (c) contour, (d) edge 

enhancement, (e) grayscale, (f) sharpen.  

Table I shows the results of using different image filters. 
These metrics help show how effectively each filter preserves 
important image features and supports accurate classification. 

TABLE I.  RESULT OF IMAGE CLASSIFICATION EACH 
FILTER IN (A) GALLS CLASS(B) HEALTH CLASS 

Filters Class Precision Recall F1-score Accuracy 

Original 
a 0.981 0.993 0.992 0.989 

b 0.992 0.981 0.992 0.987 

Blur 
a 0.993 0.992 0.992 0.992 

b 0.992 0.993 0.992 0.993 

Contour 
a 0.992 0.942 0.961 0.997 

b 0.943 0.992 0.962 0.964 

Edge 

enhancement 

a 0.999 0.983 0.991 0.989 

b 0.982 0.999 0.991 0.989 

Grayscale 
a 0.972 0.971 0.973 0.968 

b 0.973 0.972 0.971 0.969 

Sharpen 
a 0.998 0.992 0.993 0.993 

b 0.993 0.998 0.992 0.994 
 

Figure 6 shows that the original and sharpened filters 
achieved the most stable and high validation accuracy, 
suggesting well-balanced models. Blur and Edge enhancement 
performed well, although the latter showed slight overfitting. 
Meanwhile, grayscale and contour filters led to unstable results 
due to possible loss of key visual features. Overall, the Sharpen 
and Original filters were the most reliable for classification. 
Compared to traditional methods such as SVM, CNN 
performed better in [23], achieving 95.33% accuracy compared 
to 85.07% for SVM. This was further supported in [24], where 
lightweight CNN models maintained high accuracy while 
offering better efficiency in processing speed [25]. 

Figure 7 illustrates the influence of various image filters on 
classification accuracy using confusion matrices. Sharpen 
exhibited optimal performance, yielding merely 11 FP and 2 
FN, hence augmenting critical details for improved recognition.  
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

Fig. 6.  Training and validation accuracy (a) Original (b) Blur (c) Contour 

(d) Edge enhancement, (e) Grayscale, (f) Sharpen.  

Blur and Edge Enhancement are nearly aligned, balancing 
noise reduction and feature clarity while adding marginally 

more inaccuracies. Grayscale resulted in a little reduction in 
accuracy by eliminating color information, thus complicating 
disease differentiation. Contour exhibited the poorest 
performance, exacerbating misclassifications by accentuating 
edges at the expense of critical textures. In summary, Sharpen 
demonstrated superior efficacy but Contour impeded precision. 
Selecting the appropriate filter is essential for enhancing model 
performance. In line with [26], which used Excess Green Index 
(ExG) and Few-Shot Learning for more robust and scalable 
disease detection, this study presents an innovative way CNN 
with DSC that offers benefits in the detection of healthy and 
diseased Alstonia scholaris leaves. Furthermore, the image 
processing techniques in this study were proven to increase 
accuracy. This is similar to [27, 28], which used image 
processing techniques in the form of multiscale feature 
extraction methods to increase the accuracy of plant disease 
detection models. 

 

 
(a) 

 
(c) 

 
(b) 

 
(d) 

 
(e) 

 
(f) 

Fig. 7.  Confusion matrices: (a) Original, (b) Blur, (c) Contour, (d) Edge 

Enhance, (e) Grayscale, (f) Sharpen.  

IV. CONCLUSION 

This study demonstrated that CNN with DSC effectively 
classified healthy and gall-affected leaves of Alstonia scholaris. 
The Sharpen filter produced the highest classification accuracy 
by improving critical visual features. These results highlight 
the importance of meticulous image preprocessing to improve 
deep learning model performance. CNN-DSC offers a 
promising approach to early detection and management of 
plant diseases in Alstonia scholaris. Future studies should 
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explore multispectral imaging to capture more subtle disease 
symptoms. The application of transfer learning and advanced 
data augmentation techniques could further enhance model 
robustness.  
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