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ABSTRACT 

Leaf disease detection plays a crucial role in modern agricultural management, enabling early intervention 

to minimize crop losses. This paper explores the application of the YOLOv10 model for detecting and 

classifying banana leaf conditions with high accuracy. A publicly available dataset of 938 images was used, 

categorized into five classes, namely Black-Sigatoka, Healthy-Leaf, Panama-Disease, Potassium-Deficiency, 

and Yellow-Sigatoka. The model achieved a mean Average Precision (mAP@0.5) of 88.85%, a precision of 

91.22%, and a recall of 85.06%, demonstrating strong detection capabilities. These findings highlight the 

effectiveness of YOLOv10 in advancing automated disease detection, providing a reliable tool for precision 

agriculture. The model’s ability to accurately classify multiple leaf conditions can aid farmers in proactive 

disease management, ultimately enhancing crop health and sustainability. 

Keywords-object detection; deep learning; YOLOv10  

I. INTRODUCTION  

Banana is a vital crop, providing not only a key source of 
nutrition but also playing an important role in the economy, 
particularly in tropical and subtropical regions [1]. However, 
banana cultivation is threatened by various diseases and 
nutrient deficiencies that can significantly reduce yields and 
affect the quality of the fruit. Identifying and addressing these 
issues is crucial for sustaining banana production and 
minimizing economic losses. Among the most prevalent 
conditions affecting banana leaves are fungal diseases such as 
Black-Sigatoka and Yellow-Sigatoka, physiological disorders 
like Potassium Deficiency, and devastating diseases like 
Panama Disease. The existence of healthy leaves is a primary 
indicator of the plant’s vigor and productivity.  

Traditional methods of banana disease detection are time-
consuming, subjective, and prone to error, underscoring the 
need for automated and real-time solutions [2]. Recent 
advancements in Machine Learning (ML) and Deep Learning 
(DL) techniques have shown great promise in detection and 
classification of banana diseases. For instance, Hyper-Spectral 
Imaging (HSI) combined with ML classifiers like k-Nearest 
Neighbors (kNN) achieved high accuracy in detecting banana 
leaf diseases by capturing detailed spectral and spatial features 
[3]. Similarly, Convolutional Neural Networks (CNNs) such as 
AlexNet, VGG16, and ResNet have demonstrated remarkable 
success, achieving classification accuracies of up to 99%, 
highlighting their effectiveness in automating disease 
identification processes [4-7]. Among traditional machine 
learning approaches, Support Vector Machines (SVM) have 
emerged as a robust choice, with accuracies ranging from 80% 
to 99.61% in detecting diseases like Black Sigatoka and 

Banana Streak Virus. These methods excel in leveraging 
texture-based features extracted from images, enabling precise 
disease classification [8-11, 14]. For instance, authors in [8] 
employed k-means clustering and feature extraction techniques 
to detect banana leaf diseases. They used color, texture, and 
shape features to classify diseases achieving an average 
accuracy of 85%. The study highlighted the importance of 
feature extraction in improving disease detection accuracy. 
Authors in [9] utilized high spatial resolution aerial 
photographs to monitor yellow Sigatoka infestation in banana 
crops. The study employed SVM for disease classification, 
achieving an accuracy of 99.28%. The research demonstrated 
the potential of UAV-based imaging for large-scale disease 
monitoring in banana plantations. Furthermore, techniques 
employing texture analysis, such as Local Binary Patterns 
(LBP), have further contributed to improving the reliability of 
classification when combined with classifiers like SVM and 
kNN [10-12]. The recent success of ML and DL models in 
agricultural disease detection highlights their potential for real-
time implementation in precision agriculture, significantly 
reducing the reliance on manual inspections and improving the 
productivity and sustainability of banana farming [13]. Ιn [15], 
the authors proposed a novel Heap Auto Encoders (HAEs) 
technique for classifying banana leaf diseases, achieving a 
Classification Accuracy (CA) of 99.35%. This method reduced 
the need for handcrafted features and addressed overfitting 
issues, making it superior to traditional methods. The study 
used datasets such as Godliver, Scotnelson, PlantVillage, and 
real-field data to validate the approach. Authors in [16] applied 
the Discrete Orthonormal Stockwell Transform (DOST) and 
LBP features for banana leaf disease classification. The study 
achieved a CA of 95.9% using an Artificial Neural Network 
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(ANN) classifier. The authors emphasized the effectiveness of 
combining DOST with LBP-based features for accurate disease 
classification.  

Authors in [17] explore the use of transfer learning to 
accurately classify banana leaf diseases, a critical issue for 
banana farmers aiming to maintain crop yield and quality. The 
study’s main objective is to adapt pre-trained CNN models for 
classifying different banana leaf diseases, thereby minimizing 
the need for extensive labeled data and reducing computational 
demands. Using popular CNN architectures like VGG16, 
ResNet50, and InceptionV3, the authors fine-tune these models 
on a dataset of labeled banana leaf images, enabling the 
networks to identify specific diseases effectively. The 
evaluation of the models demonstrates that transfer learning 
enhances classification accuracy, making it a practical solution 
for agricultural disease identification. The study concludes that 
transfer learning is a scalable and effective tool for plant 
disease classification, offering a feasible approach for early 
disease detection in agriculture. This approach holds promise 
for aiding farmers in managing diseases proactively, ultimately 
contributing to improved crop management and yield through 
accessible AI-driven solutions. 

The YOLOv10 [18] model was chosen for this research due 
to its high efficiency and flexibility in object detection tasks. 
The considered dataset [19] includes five classes, and the 
model is evaluated based on its performance in detecting these 
distinct banana leaf conditions, contributing to improved 
disease management in agriculture.  
 

II. BACKGROUND 

This section provides an overview of the dataset categories, 
describing both the symptoms and impacts on banana plants. 

Healthy-Leaf: A healthy banana leaf is crucial for the 
optimal growth and development of the banana plant. It is 
typically large, broad, and vibrant green in color, indicating 
efficient photosynthesis and nutrient absorption. As shown in 
Figure 1(a), healthy leaves are free from spots, discoloration, or 
any signs of disease or deficiency. Maintaining healthy foliage 
is essential for maximizing fruit production and ensuring the 
plant's resilience against environmental stressors and diseases. 

Black-Sigatoka: It is also known as black leaf streak 
disease, is a fungal disease caused by Mycosphaerella fijiensis, 
which primarily affects banana leaves. As shown in Figure 
1(b), the disease is characterized by dark streaks and spots that 
gradually expand into large black patches on the leaves, leading 
to significant leaf tissue damage. As the infection progresses, it 
reduces the plant’s ability to photosynthesize, resulting in 
lower fruit yields and premature ripening. If left untreated, 
Black-Sigatoka can severely impact banana plantations, 
making it one of the most destructive diseases in banana 
production. 

Yellow-Sigatoka: It is a leaf spot disease caused by the 
fungus Mycosphaerella musicola. This disease causes yellow 
streaks or spots on banana leaves (Figure 1(c)), which can 
merge to form larger patches, gradually turning brown or black. 
Like Black-Sigatoka, it reduces the leaf’s ability to 

photosynthesize, leading to lower fruit production and yield 
loss. Although less aggressive than Black-Sigatoka, the 
Yellow-Sigatoka poses a significant threat to banana 
cultivation, especially if not controlled through proper 
agricultural practices. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Fig. 1.  Banana leaf classes: (a) Healthy, (b) Black-Sigatoka, (c) Yellow-

Sigatoka, (d) Panama-Disease, (e) Potassium-Deficiency. 

Panama-Disease: It also known as Fusarium Wilt. It is 
caused by the soil-borne fungus Fusarium oxysporum f. sp. 
cubense. As shown in Figure 1(d), it infects the banana plant 
through its roots, leading to wilting and yellowing of the 
leaves, particularly the older ones, while younger leaves may 
appear pale and stunted. Over time, the disease obstructs water 
and nutrient transport, resulting in the plant's death. Panama 
Disease is one of the most aggresive banana diseases, capable 
of wiping out entire plantations, and is particularly threatening 
to the Cavendish banana variety. 

Potassium-Deficiency: Potassium deficiency in banana 
plants manifests as a yellowing of the leaf margins, starting 
with the older leaves, followed by necrosis or browning (Figure 
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1(e)). Potassium is an essential macronutrient for banana 
plants, aiding in various physiological processes like water 
regulation, enzyme activation, and nutrient transport. A 
deficiency in potassium can weaken the plant’s structure, 
reduce fruit quality, and make the plant more susceptible to 
environmental stress and diseases. Addressing potassium 
deficiency through appropriate fertilization is key to ensuring 
healthy banana crop yields. 

III. DATASET AND METHODOLOGY 

A. Dataset 

The dataset used in this research [19], has been curated 
specifically for detecting various banana leaf conditions. It 
consists of a total of 938 images, categorized into five classes: 
Black-Sigatoka, Healthy-Leaf, Panama-Disease, Potassium-
Deficiency, and Yellow-Sigatoka. The dataset was divided into 
three subsets for training, validation, and testing purposes. As 
shown in Table I, out of the total 938 images, 657 images 
(70%) were designated for the training set, 188 images (20%) 
for the validation set, and 93 images (10%) for the testing set. 

TABLE I.  SUMMARY OF DATASET  

Category Number of Images 

Training dataset 657 (70%) 

Validation dataset 188 (20%) 

Testing dataset 93 (10%) 

Total images 938 

 

 Training Set: This set was used to train the YOLO model, 
allowing it to learn the unique patterns and features 
associated with different banana leaf conditions. 

 Validation Set: This set helps fine-tune the model and 
optimize hyperparameters, giving an indication of how 
well the model generalizes beyond the training data. 

 Testing Set: The final evaluation of the model's 
performance is carried out on this set, assessing its 
accuracy in detecting leaf conditions in previously unseen 
images.  

Figure 2 provides a bar chart of the distribution of different 
classes within the dataset. It can be seen that Potassium-
Deficiency is the most prevalent condition, while the Healthy 
and Panama-Disease are the least represented classes. 

B. YOLOv10 Model Architecture 

Real-time object detection seeks to effectively predict 
object categories and positions in images with low latency. The 
YOLO series [20] has led the way in this research due to its 
combination of performance and efficiency. YOLOv10 [18] 
improves real-time object detection by correcting inefficiencies 
from previous versions. It eliminates the need for Non-
Maximum Suppression (NMS) using a new dual assignment 
technique, lowering latency and increasing efficiency. Key 
enhancements include an upgraded CSPNet-based backbone 
for improved feature extraction, a PAN-based [21] neck for 
multiscale feature fusion, and specialized training and inference 
heads. Furthermore, YOLOv10 incorporates large-kernel 
convolutions and partial self-attention, resulting in great 
accuracy with little computational cost. With these 

modifications, YOLOv10 is now a powerful, efficient model 
for rapid and accurate object recognition. 

 

 

Fig. 2.  Dataset’s annotation distribution per class. 

C. Evaluation Metrics 

Evaluation metrics are essential for assessing the 
performance of ML models, particularly in object detection 
tasks like the one handled by the YOLO model. The metrics 
used in this study are Precision, Recall, Mean Average 
Precision at 0.5 IoU (mAP@0.5), and Mean Average Precision 
at multiple IoU thresholds (mAP@0.5:0.95). 

Precision (P) measures the accuracy of the model in 
detecting objects by calculating the ratio of correctly identified 
objects (True Positives, TP) to the total detections made (sum 
of True Positives and False Positives, FP), as shown in (1). A 
higher P value indicates that the model produces fewer FP, 
leading to more reliable detections.  

P =
��

�����
      (1) 

Recall (R) evaluates the model’s ability to capture all 
relevant objects by calculating the ratio of TP detections to the 
actual objects present in the image (sum of TP and False 
Negatives, FN), as shown in (2). High R values signify that the 
model missed fewer objects. 

R =
��

�����
     (2) 

mAP@0.5 considers the model's ability to correctly predict 
objects with an Intersection over Union (IoU) threshold of 0.5. 
IoU is calculated as the ratio of the overlap between predicted 
and actual bounding boxes to their union, as shown in (4). 
mAP@0.5 evaluates the model’s performance by taking the 
average precision across all classes at this IoU threshold. 

mAP@0.5 =
�

�
∑ P�i��

��� × R�i�   (3) 

IoU =
Area of Overlap

Area of Union
    (4) 

mAP@0.5:0.95 is a more rigorous measure, taking an 
average of mAP scores over a range of IoU thresholds from 0.5 
to 0.95, with a step of 0.05: 
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mAP@0.5: 0.95 =
�
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∑ AP�t�&.()

*�&.)   (5) 

The considered metrics provide a comprehensive 
assessment of the model’s ability to accurately detect and 
classify banana leaf conditions. 

IV. RESULTS AND DISCUSSION 

The evaluation was conducted on a test dataset, and the 
results highlight the strengths and areas for improvement across 
different disease classes. 

 

Fig. 3.  Normalized confusion matrix. 

Figure 3 shows the normalized confusion matrix of the 
proposed system on the utilized dataset. The normalized 
confusion matrix shows that the model generally performs well 
in distinguishing between specific classes, with the highest 
accuracy observed for Yellow-Sigatoka at 0.96. This indicates 
that the model has a strong ability to identify this condition 
correctly. Healthy-Leaf also shows a high accuracy rate of 
0.90, suggesting effective classification of healthy leaf samples. 
For Panama-Disease, the model achieves an 0.87 correct 
classification rate, reflecting reasonable accuracy in identifying 
this condition. Both Black-Sigatoka and "Potassium-
Deficiency" have an accuracy of 0.86, which, while slightly 
lower, still indicates reliable performance. These results 
suggest that the model is well-tuned to classify these leaf 
conditions, with the highest success in recognizing Yellow-
Sigatoka. Nonetheless, slight variations in accuracy across 
classes point to potential areas for further model refinement, 
especially for conditions like Potassium-Deficiency and Black-
Sigatoka. The charts in Figure 4 illustrate the performance 
metrics values over the training epochs for the model. 

Starting with recall materic, as indicated in the first chart 
from the top left, we see a quick climb from an initial low 
position to above 0.80 in the early epochs. This increasing 
trend indicates that the model soon learned to detect a higher 
proportion of TP, detecting relevant items more accurately as 
training progressed. Moving to mAP@50, we notice a similar 
improvement trend. Beginning with a low mAP, the model 
gradually improved its accuracy, reaching around 0.85 by the 

100th epoch. This demonstrates the model's increasing ability 
to accurately recognize objects, as assessed by the 50% IoU 
threshold. The mAP@50-95 metric increased progressively, 
similar to the other metrics, and by the last epoch, it was close 
to 0.80. This consistent increase across IoU levels suggests the 
model’s robust detection capabilities across various levels of 
overlap between predicted and actual object locations. 
Precision had risen progressively from its low starting point to 
approximately 0.9. This improvement highlights the model’s 
growing accuracy in identifying TP while minimizing FP as 
training advanced. These values illustrate that the model 
consistently improved its detection capabilities with training, 
achieving high levels of recall, precision, and mAP by the 
100th epoch, suggesting that the model is well-optimized for 
accurate and reliable object detection. 

 

 

Fig. 4.  Model's performance. 

V. CONCLUSION 

This paper demonstrated the effectiveness of the YOLOv10 
framework in detecting various conditions affecting banana 
leaves, achieving high accuracy rates across five categories. 
The model's performance indicates that YOLOv10 is a robust 
tool for precision agriculture, capable of accurately identifying 
and classifying banana leaf conditions, including Black-
Sigatoka, Healthy-Leaf, Panama-Disease, Potassium-
Deficiency, and Yellow-Sigatoka. The mean Average Precision 
(mAP@0.5) reaching 0.88 across all categories underscores the 
model’s ability to distinguish these conditions effectively. The 
results highlight YOLOv10’s strengths in identifying and 
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classifying distinct leaf conditions, demonstrating its potential 
for real-world agricultural applications where early and 
accurate disease detection is critical. However, while the model 
performs well overall, future work could focus on refining the 
dataset to address any class imbalances that may exist, as these 
could affect generalization across less frequent conditions. 
Additionally, further improvements could explore ways to 
enhance detection for leaves that may appear in varied 
orientations, lighting, or partial visibility in the field, thus 
broadening the model’s applicability in diverse agricultural 
environments. Moreover, a future work of this study would be 
to conduct an extensive comparative study using the same 
dataset, evaluating YOLOv10 against other established models 
to further validate its performance. 
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