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ABSTRACT 

This paper presents a multi-objective optimization approach for optimal Distributed Generation (DG) 

placement and sizing, optimizing power loss reduction, cost efficiency, voltage stability, and Renewable 

Energy Source (RES) absorption. The Gray Wolf Optimizer (GWO) was chosen for its strong global 

search, fast convergence, and ability to avoid local optima. Simulations on IEEE 33-bus and IEEE 69-bus 

systems compared GWO against the Cuckoo Search Algorithm (CSA), Multi-Objective Particle Swarm 

Optimization (MOPSO), and Genetic Algorithm (GA). The results showed that GWO achieved the least 

power loss and highest RES absorption, enhancing efficiency, stability, and sustainability. This study 

demonstrates the effectiveness of nature-inspired optimization in DG planning and RES integration. 

Keywords-distributed generation; renewable energy absorption; multi-objective optimization; grey wolf 

optimizer; distribution network 

I. INTRODUCTION  

The growth of Distributed Generation (DG), especially 
Renewable Energy Sources (RES) such as solar and wind, is 
reshaping distribution networks [1, 2]. DG integration reduces 
grid load, minimizes power losses, and enhances reliability 
while supporting sustainability. However, RES intermittency 
can cause voltage fluctuations, power imbalances, and stability 
issues. Thus, optimal DG placement and size must ensure 
efficiency and maximize RES integration for effective 
utilization [3, 4]. 

In recent years, the optimization of DG planning has gained 
significant attention from the research community due to its 
potential to improve energy efficiency, improve power system 
reliability, and facilitate large-scale integration of RES. 
Numerous studies have explored traditional optimization 

techniques such as Genetic Algorithm (GA) [5], Particle 
Swarm Optimization (PSO) [6], Search Algorithm (CSA) [7], 
and Nondominated Sorting Genetic Algorithm II (NSGA-II) 
[8] to solve this problem. However, these methods often face 
limitations such as susceptibility to local optima, poor global 
search capabilities, and slow convergence rates when dealing 
with complex search spaces. To overcome these limitations, 
advanced metaheuristic algorithms, such as the Gray Wolf 
Optimizer (GWO) [9], have been developed, providing an 
effective balance between exploitation and exploration, leading 
to more accurate solutions. Moreover, although some studies 
have focused on improving voltage quality and improving 
system stability with DG integration, they have not fully 
addressed optimizing RES absorption rates [4, 10]. Recent 
multi-objective optimization approaches have been proposed to 
simultaneously optimize criteria such as power loss reduction, 
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investment cost, and voltage quality [11, 12]. However, most of 
these studies have not deeply focused on maximizing RES 
utilization efficiency, resulting in suboptimal DG integration 
outcomes [13, 14]. 

This paper presents a multi-objective optimization model 
using the GWO to enhance DG planning in distribution 
networks, maximizing RES utilization while ensuring efficient 
power system operation. The model optimizes four key criteria: 
minimizing power losses, reducing DG investment costs, 
improving voltage quality, and maximizing RES absorption. 
The GWO algorithm is chosen for its strong global search, 
ability to avoid local optima, and faster convergence compared 
to traditional methods such as GA, PSO, and NSGA-II. 
Simulations on IEEE 33-bus and 69-bus systems compare 
GWO with CSA [15], Multi-Objective Particle Swarm 
Optimization (MOPSO) [16], and GA [17], demonstrating that 
GWO achieves superior optimization, reduces power losses, 
maintains voltage stability, and maximizes RES utilization 
more effectively, contributing to a more sustainable and 
efficient distribution network. 

II. PROBLEM DESCRIPTION 

A. Distribution Network Model with Integrated Distributed 
Generation 

Traditional distribution networks operate with a 
unidirectional power flow from substations to consumers. 
However, DG integration introduces bidirectional power flows, 
posing challenges in optimally placing and sizing DG units to 
maintain safe, efficient, and stable operation (Figure 1) [18]. 
The integration of DG leads to complexities such as voltage 
regulation issues, power flow imbalances, and protection 
system coordination challenges. Therefore, it is essential to 
develop optimization models that can effectively address these 
challenges while maximizing the benefits of DG integration, 
such as reduced power losses, enhanced voltage stability, and 
increased renewable energy utilization. 

 

 

Fig. 1.  Distribution network with DG. 

B. Objective Function 

The DG optimization problem is a multi-objective function 
optimizing performance, costs, and RES utilization, expressed 
as: 

� � ���loss � ���DG � �	
� � ��

total

����
���,����� (1) 

where �loss is the total power loss in the system (kW), �DG  is 
the total investment cost of DG units (USD), 
� is the voltage 
deviation at nodes compared to the nominal voltage (p.u.), 
�RES/�total is the ratio of RES to the total load power, which 
needs to be maximized, ����  is a small threshold to avoid 
division by zero when there is no RES (����=0.01), and ��, 
��, �	, and �� are weighting factors to adjust the priority level 
of each criterion. 

C. Problem Constraints 

1) Power Balance at Each Node 

The system must ensure power balance at each node. 

�gen,� � �DG,� � �load,� � �loss,� , ∀! ∈ #  (2) 

where �gen,�  is the power generated from the main grid at node 

!, �DG,�  is the power generated from DG at node i, �load,� is the 

load demand at node ! , and �loss,�  is the power loss on the 

branch connected to node i. 

2) Voltage Limits at Each Node 

The voltage at each node must remain within safe operating 
limits to prevent damage to electrical equipment:  

���� $ ���� � 0.95-1.05 p.u. 

���� * �� * ���� , ∀! ∈ #   (3) 

3) DG Power Capacity Limits 

The output power of DG units must not exceed their 
allowable capacity to avoid overloading. The maximum DG 
power output, �DG,�

��� , is determined based on the RES 

availability at node i: 

�DG,�
��� * �DG,� * �DG,�

���, ∀! ∈ #DG  (4) 

4) Total System Power Constraint 

This constraint ensures that the total power generated from 
both DG units and the main grid equals the total load demand 
and system power losses, helping maintain the balance and 
stability of the power system. The maximum total system 
capacity, denoted as �total��� , represents the upper limit of the 
system's allowable power output. 

∑ �DG,�
-DG
�.� * �total���    (5) 

D. Decision Variables 

In this optimization problem, the decision variables are: /� 
(the location of the DG unit, representing the node i in the 

distribution network where the DG is installed) and �DG,�  (the 

power output of the DG at node i, representing the optimal 
generation capacity assigned to each selected location). 

The GWO algorithm optimizes DG placement and capacity 
to balance power loss reduction, cost minimization, voltage 
improvement, and renewable energy absorption. 

� � ���0122 � ���34 � �	
� � ��

56578

����
���,�����  (6) 

Power loss (kW): 
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�loss � ∑ :�;��,;�∈ℬ
∣>?@∣A

∣B?∣A     (7) 

DG investment and operational cost (USD): 

�DG � ∑ �install,�-DG
�.�     (8) 

Voltage deviation (p.u.): 


� � ∑ ∣-
�.� �� $ �CDE ∣   (9) 

RES utilization factor: 


total
����
RES,����� � ∑ 
load,?F

?GH
���I∑ 
RES,?

FRES
?GH ,����J

  (10) 

III. PROPOSED METHOD 

This study proposes an optimization method for DG 
placement and sizing to maximize RES absorption, minimize 
power losses, maintain voltage quality, and optimize costs. 
GWO is chosen for its fast convergence, strong global search, 
and ability to avoid local optima. The fitness function combines 
the main objective with penalty terms to ensure compliance 
with network constraints, expressed as: 

�!KLMNN � � � �B � �DG � �bal   (11) 

where � is the main objective function value, as defined in (1), 
and �B , �DG , and �bal  are penalty functions corresponding to 
voltage constraints, DG power output limits, and power 
balance constraints, respectively. 

 Voltage constraint penalty: The voltage at each node must 
be within the allowable range O����, ����P . If the node 
voltage �� falls outside this range, a penalty is applied. The 
penalty function is defined as: 

�B �  

Q� ∑ Rmax�0, ���� $ ��� � max�0, �� $ �����V-
�.�  (12) 

where Q� is the voltage penalty coefficient. 

 DG power output penalty: The power output of each DG 

unit must be within its technical limits. If �DG,�, exceeds the 

allowed range, a penalty is imposed: 

�DG � Q� ∑ ImaxR0, �DG,�
��� $ �DG,�V � maxR0, �DG,� $-DG

�.�
            �DG,�

���VJ     (13) 

where Q� is the DG power output penalty coefficient. 

 Power balance penalty: The total power generated from DG 
and the grid must equal the sum of the load demand and 
system losses. Any imbalance incurs a penalty: 

�bal � Q	 ∣ �gen � �DG $ ��load � �loss� ∣  (14) 

where Q	 is the power balance penalty coefficient. 

 Adding these penalty functions to the objective function 
helps guide the optimization algorithm to find solutions that 
are not only optimal in terms of performance but also 
maintain system stability and reliability. The GWO 
algorithm mimics the hunting behavior of gray wolves, 
where the top three wolves, Alpha, Beta, and Delta, lead the 

search process. Each wolf represents a potential solution, 
corresponding to a combination of DG locations and 
capacities. The positions of the wolves are updated 
iteratively based on the following formula: 

W�K � 1� � XYZX[ZX\
	     (15) 

where W�K � 1�  is the updated position of a solution at 

iteration t+1, and W] , Ŵ  and W_  are the positions of the best 

three solutions (wolves) in the current population. 

This ensures global convergence while avoiding local 
optima, making it ideal for DG planning. Figure 2 outlines the 
GWO process, including initialization, evaluation, updates, and 
convergence checks. 

 

 

Fig. 2.  GWO flowchart for DG optimization. 

1) Step 1: Initialize Parameters and the Initial Population of 
Solutions 

This step defines the number of individuals (gray wolves) 
in the population, the maximum number of iterations, and 
initializes the DG locations and capacities randomly within the 
constraint limits. It also sets the weighting factors ��, ��, �	, 
and �� based on the priority of each optimization criterion. 

2) Step 2: Calculate the Objective Function 

For each individual in the population, this step calculates 
the values of �loss, �DG, 
�, and �RES. The three best solutions, 

W], Ŵ , and W_ , are identified based on the objective function 

values. 

3) Step 3: Update the Positions of Gray Wolves Based on the 
Hunting Mechanism 

This step updates the position of each individual according 
to the hunting behavior equation: 

W�K � 1� � W] $ ` ⋅ b  

where b �∣ � ⋅ W] $ W ∣  represents the distance between the 
current wolf and the prey, and ` , �  are random adjustment 
vectors that help expand or narrow the search space. 
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4) Step 4: Check Constraints and Adjust Solutions 

This step verifies that node voltages are within allowable 
limits, DG power outputs do not exceed their capacity limits, 
and the total DG generation does not surpass the total load 
demand. If any solution violates the constraints, it is adjusted to 
the nearest valid value. 

5) Step 5: Check Stopping Criteria 

The algorithm stops if the maximum number of iterations is 
reached or if there is no significant improvement in the 
objective function. If the stopping criteria are not met, the 
process returns to Step 2 to continue updating the solutions. 

6) Step 6: Output the Optimal Results 

Once the optimal solution W]  is found, this step outputs the 
final optimal results, including DG locations and capacities, 
power losses, voltage quality, and the achieved RES utilization 
rate. 

IV. TEST RESULTS 

The IEEE 33-bus and 69-bus systems were simulated using 
the backward-forward sweep method combined with 
optimization algorithms to determine the optimal placement 
and sizing of DG units. The simulations were carried out on a 
computer with an Intel Core i7 CPU 5.0 GHz, 32GB RAM, 
running Windows 11 and utilizing MATLAB R2023a. GWO 
uses 30 individuals for the 33-bus system and 50 individuals 
for the 69-bus system, with maximum iterations of 100 and 
150, respectively. A control coefficient was set to decrease 
from 2 to 0 to balance between exploitation and exploration. 
For comparison, the CSA employed 30 nests with an 
abandonment probability of cd � 0.25  and Levy flight 
characterized by Q � 1.5. The MOPSO used 30 particles with 
an inertia weight of � � 0.7  and acceleration coefficients 
g� � g� � 1.5. Meanwhile, the GA operates with a population 
of 30 individuals, a crossover rate of 0.8, and a mutation rate of 
0.02. These parameters were optimized to ensure fast 
convergence and effective global search. 

TABLE I.  PARAMETERS OF THE 33-BUS AND 69-BUS 
DISTRIBUTION NETWORKS 

Parameter 33-bus 69-bus 

�nominal 12.66 kV 12.66 kV 

Total load capacity (3.715 + j2.30) MVA (3.80 + j2.69) MVA 

�DG,� 0.5 - 2.0 MW 0.5 - 2.0 MW 

�DG 1500 USD/kW 1500 USD/kW 

Number of DGs  3 3 

�min $ �max 0.90 - 1.05 p.u. 0.90 - 1.05 p.u. 

��, ��, �	 , �� 0.2; 0.2; 0.1; 0.5 0.2; 0.2; 0.1; 0.5 

Max iterations 100 150 

Population size 30 50 

 
GWO simulates the hunting behavior of gray wolves, 

effectively avoiding local optima and maintaining solution 
diversity. CSA enhances global search capabilities but can 
become unstable due to its inherent randomness. MOPSO 
shows fast convergence but is prone to get stuck in local 
optima, while the GA tends to reduce population diversity over 
time, lowering its optimization efficiency. Assigning a weight 
of �� � 0.5  to maximize RES absorption helps achieve a 

balance between environmental objectives and technical 
efficiency. The simulation results demonstrate that increasing 
this weight allows the algorithm to prioritize solutions with 
higher RES absorption rates without significantly increasing 
power losses or investment costs. Meanwhile, weights �� �
0.2  and �� � 0.2  ensure that power loss reduction and 
investment cost optimization are not overlooked, maintaining 
the system's overall performance. A smaller weight of �	 �
0.1 allows the system to maintain stable voltage within safe 
limits without over-optimizing this factor. In the DG planning 
optimization problem, prioritizing maximum RES absorption is 
essential to reduce dependence on traditional energy sources. 
Therefore, the highest weight �� � 0.5 is assigned to ensure 
the algorithm favors solutions that maximize RES utilization. 
At the same time, weights �� and �� help balance operational 
performance and investment costs, while �	  ensures that the 
system operates within safe voltage limits. 

A. 33-Bus Distribution System 

Figure 3 illustrates the single-line diagram of the 33-bus 
distribution network with 37 transmission branches, showing 
the interconnection structure between the main substation, load 
nodes, distribution lines, and potential locations for integrating 
RES. The node and branch data are referenced from [19, 20] to 
ensure accuracy for the simulation study. 

 

 

Fig. 3.  Single-line diagram of the 33-bus system. 

TABLE II.  SIMULATION RESULTS ON THE 33-BUS SYSTEM 

Algorithm 
DG location and 

capacity (MW) 

hloss 
(kW) 

iDG  

(million USD) 

ΔV 

(p.u.) 

hRES  
% 

GWO 
6 (1.2), 18 (0.8), 30 

(1.0) 
85.4 1.45 0.028 88 

CSA [15] 
7, (1.1), 17 (0.9), (29, 

1.0) 
88.7 1.50 0.034 85 

MOPSO [16] 
5 (1.0), 16 (0.85), 28 

(0.95) 
92.1 1.53 0.039 82 

GA [17] 
8 (1.05), 19 (0.9), 31 

(0.92) 
96.0 1.58e6 0.043 79 

 
Table II shows that the GWO algorithm outperforms other 

methods, achieving the lowest power loss (85.4 kW) and the 
highest RES absorption rate (88%). This result demonstrates 
GWO's superior global search capability due to its effective 
balance between exploitation and exploration, which helps 
avoid local optima and optimize system performance. 
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Compared to GWO, CSA achieves relatively good results with 
a power loss of 88.7 kW and a RES absorption rate of 85%, but 
its performance is less effective due to slower convergence and 
a limited search range. Meanwhile, MOPSO exhibits faster 
convergence but is prone to getting stuck in local optima, 
leading to higher power losses (92.1 kW) and a lower RES 
absorption rate (82%). GA produces the least favorable results, 
with the highest power loss (96.0 kW) and the lowest RES 
absorption rate (79%), mainly due to the reduction in 
population diversity after multiple generations of crossover and 
mutation, which limits its ability to find optimal solutions. 
Thus, GWO not only minimizes power losses but also 
optimizes RES utilization efficiency while ensuring more 
stable and sustainable operation of the distribution network. 
Figure 4 presents a comparative analysis of the simulation 
results of different algorithms applied to the 33-bus system. 

 

 
Fig. 4.  Parameter comparison for the 33-bus network. 

B. 69-Bus Distribution System 

Figure 5 illustrates the single-line diagram of the 69-bus 
distribution network with 73 branches, showing the 
interconnection structure between the main substation, load 
nodes, distribution lines, and potential locations for integrating 
RES. The node and branch data are referenced from [19, 20] to 
ensure accuracy for the simulation study. This diagram features 
a more complex structure, providing a basis for evaluating the 
effectiveness of optimization algorithms in terms of reducing 
power losses, improving voltage quality, and maximizing RES 
utilization in large-scale distribution networks. 

 

 

Fig. 5.  Single-line diagram of the 69-bus system. 

Table III further confirms the superior performance of the 
GWO algorithm in optimizing the placement and sizing of DG 
units in the 69-bus distribution network. The algorithm 
achieves the lowest power loss (78.3 kW) and the highest RES 
absorption rate (89%), demonstrating its ability to maintain 
optimal performance even as the system becomes more 
complex. Compared to GWO, CSA shows higher power loss 
(82.5 kW) and a lower RES absorption rate (86%) due to its 
less effective search capability in larger solution spaces. 
Although MOPSO is a swarm-based algorithm with the 
advantage of fast convergence, it is still limited by the tendency 
to get trapped in local optima, resulting in a power loss of 87.0 
kW and a RES absorption rate of only 83%. The GA continues 
to produce the least favorable results, with the highest power 
loss (91.5 kW) and the lowest RES absorption rate (80%), 
clearly reflecting its limitations when handling multi-objective 
optimization problems in large-scale power systems. Thus, 
GWO exhibits strong adaptability to complex distribution 
systems, optimizing performance, reducing energy losses, and 
maximizing RES utilization. This contributes to the 
development of a greener and more sustainable distribution 
network. 

TABLE III.  SIMULATION RESULTS ON THE 69-BUS SYSTEM 

Algorithm 
DG location and 

capacity (MW) 

hloss 
(kW) 

iDG  

(million USD) 

ΔV 

(p.u.) 

hRES 
% 

GWO 
11 (1.5), 27 (1.2), 50 

(1.3) 
78.3 1.42 0.026 89 

CSA [15] 
10 (1.4), 28 (1.1), 49 

(1.25) 
82.5 1.47 0.032 86 

MOPSO [16] 
9 (1.35), 26 (1.15), 48 

(1.2) 
87.0 1.51 0.037 83 

GA [17] 
12 (1.3), 29 (1.1), 51 

(1.2) 
91.5 1.55 0.041 80 

 

 

Fig. 6.  Parameter comparison for the 69-bus network. 

The simulation results on both the 33-bus and 69-bus 
systems show that GWO consistently achieves the best 
optimization performance, demonstrating its strong scalability 
when applied to distribution networks of varying sizes. 
Specifically, GWO achieves the lowest power loss (85.4 kW) 
and the highest RES absorption rate (88%) on the 33-bus 
network, while continuing to lead on the 69-bus network with a 
power loss of just 78.3 kW and an RES absorption rate of 89%. 
This confirms GWO's strong global search capability, even in 
complex systems. In contrast, GA performs worst due to local 
optima trapping, leading to higher power losses and lower RES 
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absorption. Although CSA and MOPSO perform relatively 
well, they remain limited in global search. GWO's superiority 
lies in its flexible search, avoidance of local optima, and 
balanced exploration-exploitation, making it the most effective 
method for DG planning, ensuring efficient and sustainable 
operation, and maximizing RES utilization. 

V. CONCLUSION 

This paper presents an optimized DG planning approach 
using GWO to maximize RES absorption, minimize power 
losses, maintain voltage quality, and optimize investment costs. 
The proposed method was applied to IEEE 33-bus and 69-bus 
systems, where GWO consistently outperformed CSA, 
MOPSO, and GA, achieving the lowest power losses (85.4 and 
78.3 kW) and the highest RES absorption rates (88% and 
89%). These results highlight the GWO's strong optimization 
capability, effectively balancing exploitation and exploration to 
enhance power system sustainability, reduce dependence on 
fossil fuels, and improve the overall efficiency and stability of 
distribution networks. Furthermore, compared to other heuristic 
methods, GWO proves to be a more reliable choice in multi-
objective DG planning due to its high accuracy and strong 
adaptability. The study demonstrates that GWO is a highly 
effective tool for DG planning, providing superior performance 
compared to traditional optimization algorithms.  
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