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ABSTRACT 

Online Social Networks (OSNs) are becoming increasingly important in business, government, and all 

areas of life. For-profit companies use them as rich sources of information and dynamic platforms to drive 

strategies in product design, innovation, relationship management, and marketing. However, analyzing 

and retrieving information from these platforms presents distinct challenges due to their inherent 

characteristics and dynamic nature. To address this, researchers have proposed various approaches for 

social information retrieval, ranging from term-based analysis to semantic-based methods. To overcome 

the limitations of existing techniques, the present study proposes a multilayer model that integrates graph 

analysis, semantic content, and deep learning. The general proposed approach is also presented. By 

combining learning-to-rank techniques with linked data, a robust framework for social information 

retrieval is constructed. This method enables a more nuanced understanding by leveraging both the rich 

contextual information provided by linked data and the structural characteristics of social networks. The 

proposed model is a flexible framework that can be easily extended to add or remove features and can be 

applied to various tasks. The experimental results confirm the effectiveness and efficiency of the proposed 

approach.  

Keywords-online social network; social information retrieval; linked open data; entity linking; deep 

learning; learning to rank 

I. INTRODUCTION  

One of the main developments of the Web over the past 
decade has been the emergence of OSN platforms, such as 
Facebook, Twitter, and Instagram, with the latter being the 
most frequently used for influencer marketing. These platforms 
enable users to connect, share, and interact within online 
communities, generating vast amounts of data. As a result, an 
enormous volume of information is being produced at 
incredibly rapid rates, often making data quickly outdated [1]. 
Some of the most well-known applications of OSNs include 

viral marketing, decision-making processes, and brand 
advertising [2]. 

In this context, a key challenge is enabling users to find 
relevant information according to their interests and needs—an 
area commonly referred to as Social Information Retrieval 
(SIR) [3]. However, analyzing and retrieving information from 
these platforms presents unique challenges due to the short 
length and noisy nature of the content, which often includes 
slang, abbreviations, emojis, and mixed languages. 

Early research did not take into account the social aspect of 
the Web. Traditional models treated web pages as static, 
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homogenous collections of terms, relying on ranking 
algorithms (e.g., PageRank [4], HITS [5]) and text-based 
similarity measures between queries and documents (e.g., 
cosine similarity, Okapi BM25 [6]). Today, however, several 
projects aim to improve the SIR process by leveraging data 
from social networks [7]. Popular research areas include 
identifying influential users [8, 9], personalized 
recommendations [10], sentiment analysis [11], event 
detection, and real-time information retrieval [12]. 

Twitter is one of the most popular microblogging platforms, 
offering access to real-time data. This article proposes an 
approach for retrieving information from Twitter streams. The 
primary goal is to determine people’s views about concepts, 
such as products, brands, and individuals. Microblogging 
retrieval systems face several challenges, as posts tend to lack 
context due to their short length and are often informal, noisy, 
and ambiguous. To address these issues, this study proposes a 
new framework: Multilayer Model for Social Information 
Retrieval based on Entity Linking and Learning to Rank 
(MSIR2L), which incorporates both semantic and social 
features. This paper presents the general proposed framework 
for social information retrieval, which combines deep learning 
methods with linked data. This approach enables a more 
nuanced understanding by leveraging both the rich contextual 
information found in linked data and the structural 
characteristics of social networks. 

In order to properly situate this study’s proposal, this 
section describes a few frameworks that have been presented in 
the literature. One of the first frameworks which used linked 
data for entity disambiguation was Linked Data Entity Linking 
Framework (LINDEN) [13], which combined linguistic 
analysis with semantic understanding from structured data 
sources, such as DBpedia. This allowed LINDEN to link items 
with high precision. However, it relied on vast amounts of 
interconnected data, which restricted its use in domains lacking 
such organized resources. The Learning-Based Named Entity 
Detection Framework (LINGE) [14] integrated machine 
learning techniques, such as Conditional Random Fields 
(CRF). Its effectiveness depended on the availability of large 
volumes of training data. Knowledge-Aware Entity Linking 
(KAURI) [15] significantly outperformed existing frameworks 
for tweet entity linking. It used a unified graph-based model 
that combined intra-tweet local information with inter-tweet 
user interest information, which proved highly effective in the 
novel setting of tweet entity linking. However, its reliance on 
external information limited its broader applicability. Yet 
Another Framework for Tweet Entity Linking (YAFTEL) [16] 
was specifically designed for linking entities in noisy, informal, 
and short texts. YAFTEL employed contextual and coherence-
based measures to handle the ambiguities typical of social 
media content. It incorporated the degree of direct references 
between candidate entities into the traditional approach used by 
the KAURI system. Experiments showed that YAFTEL 
mapped entity mentions to Wikipedia entities more accurately 
than KAURI, particularly when candidate entities referenced 
each other mutually or unidirectionally. Nonetheless, YAFTEL 

was limited to tweet-based applications. Finally, Optimized 
Contextual Entity Linking (OPTIC) [17, 18] was based on 
contextual embeddings and utilized BERT for machine 
learning. OPTIC demonstrated significant improvements in 
linking accuracy, although its use of deep learning models 
made it computationally intensive. These frameworks illustrate 
the evolution from early linked data-based approaches to 
modern machine learning and context-aware models. Table I 
presents a comparison of the frameworks found in literature. 
The present work proposes a new framework: MSIR2L, a 
mixed entity linking method based on social and contextual 
features, integrated within a deep learning architecture. 

TABLE I.  COMPARISON OF LITERATURE FRAMEWORKS 

Framework Foundations Advantages Limits 

LINDEN 
Linked data 
integration 

High precision with 
semantics 

Relies on 
comprehensive 

linked data 

LINGE General NER + EL Adapts via ML 
Needs large, high-

quality training data 

KAURI 
Knowledge-based 

linking 
Domain-specific 

adaptation 
Requires external 

knowledge resources 

YAFTEL 
Tweet entity 

linking 
Noisy/short text Limited to tweets 

OPTIC 
Context-aware 

linking 
Complex 
ambiguity 

Computationally 
intensive 

MSIR2L 

Microblog 
retrieval/ tweet 
entity linking 

Noisy/short 
text/document 

Adds more features 

 

II. PRELIMINARY AND DEFINITIONS 

This work is related to the area of social information 
retrieval, specifically microblog post retrieval. A user is 
typically interested in reading a stream of microblog posts in 
real time. The main goal of real-time microblog post retrieval is 
to filter the stream of posts according to the user's interest 
profile (query) and determine their relevance score. 
Microblogging systems are commonly used for sharing short 
posts with online communities, resulting in a vast stream of 
content related to current topics, such as business, sports, 
politics, conferences, and natural disasters. Most early 
microblog information retrieval systems use term-based 
approaches, like TF-IDF and BM25 [6]. However, term-based 
techniques are highly sensitive to variations in terms of usage 
and often suffer from issues, like polysemy and synonymy. 

For example, depending on the context, a single term, such 
as "Amazon", as shown in Figure 1, might refer to a rainforest, 
a river, a company, etc. To address this problem, semantic-
based approaches [19] have been developed to interpret text 
based on its context. One method of introducing semantics into 
text is by linking named entity mentions detected in tweets 
(e.g., "Amazon") with their corresponding real-world entities in 
a knowledge base, such as DBpedia. This enables a more 
structured and machine-understandable representation of the 
data. This process of connecting tweets to a knowledge base is 
called entity linking [20]. 
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Fig. 1.  Disambiguation entity example. 

 
Fig. 2.  Microblog information retrieval approaches. 

Previous research has utilized hybrid approaches [21, 22], 
including social network analysis, to improve information 
access and investigate a real-time feature to address the 
problem of dynamicity in microblogging platforms, as depicted 
in Figure 2. This occurred because users care about the quality 
of information as much as about its fresh nature and the quality 
of the source. The proposed model is inspired by the hybrid 
approach and combines social features with entity linking using 
deep learning. 

A. Entity Linking 

Recent developments in Wikipedia and the Linked Open 
Data (LOD) [23] have made it easier to automatically create 
machine understanding knowledge bases, such as YAGO [24] 
and DBpedia [25]. Using the collection of tweets to bridge 
these knowledge bases helps fill and enhance the current 
knowledge bases while also allowing for the exploitation and 
comprehension of the vast corpus of important personal data on 
the Web.   Tweet entity linking is defined as the task to link the 
textual named entity mentions detected from tweets with their 
mapping entities existing in the Knowledge Graph (KG). A KG 
represents named entities (e.g. a person called "Jeff Bezos"), 
concepts (e.g. "Person"), or literal values (e.g., strings, integers, 
dates) as nodes, and links between nodes as directed edges. 

 Definition 1: KG [26]: Formally, a KG is a graph KG (V, 
E), where V is a set of vertices and E is a set of edges. Each 
v ∈ V represents a semantic thing, i.e., a named entity, a 
concept, or a literal value. Each e ∈ E represents a property 
of a named entity or concept by linking the respective node 
to a named entity, concept, or literal value. 

 Definition 2: Mention: A mention m is a sequence of words 
extracted from text and referring to some entities. A 
mention can refer to multiple entities. 

 Definition 3: Tweet entity linking: Given the tweet 
collection T posted by some Twitter users and named entity 
mention set M, the goal is to identify the mapping entity ei  

in the knowledge base for each entity mention mj ∈M. If 
the mapping entity of entity mention does not exist in the 
knowledge base, the user should return to NIL. 

TABLE II.  AN ILLUSTRATION OF THE TWEET ENTITY 
LINKING 

Tweet Candidate mapping entities 

t1: "Amazon is breaking 
records this year in sales!" 

Amazon.com; Amazon River, 
Amazon Rainforest, Amazon 

(mythology) 

t2: "Conservation efforts for 
the Amazon are more important 

than ever." 

Amazon Rainforest, Amazon River, 
Amazon.com, Greenpeace 

t3: "Amazon warriors have 
always fascinated historians. 

#WonderWoman" 

Amazon (mythology), Amazon 
Rainforest, Amazon (fictional team or 

group), Wonder Woman 

t4: "The view from the Amazon 
is breathtaking—nature at its 

finest." 

Amazon Rainforest, Amazon River, 
Amazon.com (e.g., metaphorical 

view of growth), National 
Geographic 

 
In Table II, "Amazon" is the mention of Amazon.com, 

Amazon River, Amazon Rainforest, Amazon (mythology).  To 
resolve such a multiple mapping between mentions and 
entities, entity linking is required. 

B. Deep Learning 

The information retrieval process can be enhanced by 
applying machine learning [22, 27]. Improved classification 
and ranking of relevant documents are made possible by the 
learning algorithms. Extracting information from such big data 
is difficult, though. To handle large data and automatically 
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identify heterogeneous data, researchers started utilizing deep 
learning techniques. The primary deep learning methods are: 

 Deep Neural Networks (DNN). It comprises of multiple 
hidden layers, with each layer having hundreds of nonlinear 
processing components. It takes large number of input 
features and extracts features automatically from various 
hierarchical stages by using neurons of different layers.  

 Convolution Neural Networks (CNN). It consists of several 
convolutional layers and subsampling layers (reduces the 
feature map size). The feature maps are joined to get fully 
connected layers to get a final output. 

 Recurrent Neural Networks (RNN). It takes sequential data 
as input and forms a directed cycle by allowing the 
connections among neurons in the same hidden layers. It 
may diminish the vanishing gradient problem by using 
Long Short-Term Memory (LSTM). 

 Autoencoder. It has an encoder NN, which converts the 
information from the input layer to some hidden layers, and 
then feeds them to the decoder NN, which rebuilds its own 
inputs using lesser number of hidden layers. Hence, its 
basic purpose is dimensionality reduction. 

III. PROPOSED APPROACH 

This section describes the proposed framework, MSIR2L, 
as shown in Figure 3. MSIR2L is a generic framework that can 
easily be extended to add or remove features and can also be 

applied in different tasks, such as influencer detection and 
entity linking in long text. 

A. General Description of the Proposed Approach 

Retrieval in microblogs faces semantic problems. One 
effective way to solve these problems is to integrate a 
knowledge base. In fact, DBpedia is receiving more attention in 
recent years as one of the central datasets in the LOD. 
MSIR2L, as depicted in Figure 3. It integrates semantic, 
contextual, and social features with a learning-based ranking 
model to optimize entity linking accuracy, consisting of the 
following steps: 

 Tweets are collected, pre-processed for tokenization, stop-
word removal and entity mention extraction are performed, 
with features, like contextual keywords, hashtags, and 
social attributes. 

 DBpedia, a popular knowledge base, utilizes semantic 
expansion techniques and feature engineering to enrich 
extracted features for learning- based ranking, expanding 
entity understanding and forming a structured 
representation. 

  Tweet mention, where entities are matched using semantic 
features, and redirect pages to generate a candidate set, 
retaining only the relevant ones. 

 

 

 

 
Fig. 3.  Proposed framework MSIR2L. 
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B. Problem Statement and Algorithm 

In this section, the goal of this paper is formally defined. 
Given the social media posts P = {p1, · ·  · ,pn }and an entity 
mention m in Pi posted by a user u, the goal is to determine the 
most liking real-world entity R from a candidate set E_m.  

 
Algorithm 1: Hybrid Retrieval 

 

Input: Query Q, Tweets T, Knowledge Base 

K, Weights (α, β, γ, δ, λ) 

Output: Ranked list of microposts 

 

Preprocess Query Q 

Retrieve initial microposts T_Q   

T_Q ← Micropost_Retrieval (Q, T)  

// using TF-IDF  

For each micropost t ∈ T_Q do 

 // Initialize scores 

Initialize Score_List 

// Generate candidate entities 

E in m_E← Candidate_ Generation (m, K) 

Repeat For (each e in E do) 

 //Compute individual scores 
Calculate_Social_Interest (u, e, U_e) 

Compute_Popularity (e, E_m) 

Compute_Recency (e, E_m, τ) 

Compute_ContextualSim (m, e, T, K)   

S(e) ← α * S_interest + β * S_popularity + 

γ * S_recency + δ * S_context 

 

// Rank entities and return the top one 

If (S(e) > Max_Score then 

R ← Entity_With_Highest_score 

Return R 

End 

 

Each candidate entity is matched from a knowledge base K. 
The entity linking process involves calculating a combined 
score S(e) for each candidate entity based on four features: 

1) Social Interest: Reflecting the user’s engagement with 
the community discussing entity e.  

2) Popularity: Measuring how frequently "e" is mentioned 
in the knowledge base.   

3) Recentness: Evaluating the suitability of e based on 
recent tweets or events.  

4) Contextual Similarity: To compute the contextual 
similarity between micro posts (tweets) and DBpedia entity 
descriptions, deep learning techniques are utilized. Specifically, 
an LSTM Autoencoder or Transformer-based embeddings (like 
BERT) can be used to extract dense vector representations of 
both the tweet text and the DBpedia entity descriptions. These 

embeddings are then compared using cosine similarity. The 
final score for each candidate is computed as: 

S(e)=α⋅S_interest(u,e)+β⋅S_popularity(e)+γ⋅S_recency(e)+ 

δ⋅S_context (m, e)    (1) 

It should be noted that S_interest, S_popularity, S_recency 
are obtained from [16].  

The originality in the present work is a combination of 
these four features. To learn the most significant features (word 
embeddings), this study employed the autoencoder neural 
network. An autoencoder neural network architecture is based 
on three main components to learn efficient representations: 
encoder, code and decoder. In this work, the Encoder-Decoder 
LSTM architecture was deployed. 

IV. EXPERIMENTS AND RESULTS 

This section details the experiments performed to evaluate 
MSIR2L. The obtained results are compared with those of 
state-of-the-art approaches. This paper presents the results of 
the comparison the proposed framework with KAURI, as the 
best EL Framework, and OPTIC, which also uses deep learning 
to annotate EL. However, it should me mentioned that further 
updates and experimentations are being developed.  

The F1 score is utilized as the comparison metric, because 
it has been used as an evaluation metric for the disambiguation 
step of the EL task in several works. The present study employs 
the dataset microposts2016-Training from the NEEL challenge 
2016 for training the neural network model. This dataset 
consists of microblog posts with 8665 instances of recognized 
mentions in their texts of which 6374 of DBpedia entities and 
2291 of "NIL". All the programs were implemented in JAVA 
and all the experiments were conducted on a single machine 
server (eight 2.00GHz CPU cores, 10GB memory) with 64-bit 
Windows. For the training of the proposed model, the present 
work used the same configuration as in OPTIC. For 
disambiguation, a threshold of 0.7 was adopted for the 
probability of an entity candidate being the correct one.  

TABLE III.  RESULTS OF COMPARISON 

Framework OPTIC KAURI MSIR2L 

F1 score 0.9541 0.8025 0.9782 

 
MSIR2L and OPTIC performed better on the NEEL2016 

dataset, since the training set of the proposed NN model is from 
that dataset. MSIR2L performed better than the current best 
framework KAURI. 

The experimental results revealed that the proposed system 
achieved good results in terms of precision, recall, indicating 
its effectiveness in short queries, as displayed in Figure 4. 
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Fig. 4.  Performance of the proposed system in terms of precision and recall using short queries. 

V. CONCLUSION 

This paper proposed an approach for micro post retrieval 
in microblogging platforms to improve retrieval 
effectiveness in Online Social Networks (OSNs). The 
problem of social information retrieval is addressed as a 
novel research area that bridges information retrieval and 
social network analysis to improve information access. The 
Multilayer Model for Social Information Retrieval based on 
Entity Linking and Learning to Rank (MSIR2L) framework 
was introduced. MSIR2L is a generic framework that can 
easily be extended to add or remove features and can also be 
applied in different tasks, such as influencer detection and 
entity linking in long text. The former was refined by 
incorporating improved semantic features and expanding the 
dataset for more comprehensive evaluations. Deep learning 
techniques were integrated for ranking, query expansion, and 
feature extraction. The experimental results demonstrate that 
MSIR2L significantly outperforms the state-of-the-art 
methods in terms of precision. Moreover, all features 
adopted by MSIR2L are quite effective for the 
microblogging information retrieval task. Compared to 
previous approaches, the proposed framework demonstrates 
superior performance, particularly in handling short 
documents and tweet retrieval. The introduced approach 
outperforms KAURI, a leading learning framework, in short 
texts and noise. More features are additionally used along 
with OPTIC to support diverse datasets. These results 
demonstrate the effectiveness of the proposed approach and 
its promise for further developments in entity linking, 
particularly in microblogging and short text application. 
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