
Engineering, Technology & Applied Science Research Vol. 15, No. 2, 2025, 21982-21988 21982  
 

www.etasr.com Maatallah et al.: Enhancing IoT Security for Sustainable Development: A Parity Checking Approach … 

 

Enhancing IoT Security for Sustainable 

Development: A Parity Checking Approach for 

Fault Detection in PRESENT Block Cipher 
 

Nada Maatallah 

Electronics and Micro-Electronics Laboratory, Faculty of Sciences of Monastir, University of Monastir, 

Tunisia 

nadamaatallah00@gmail.com 

 

Hassen Mestiri 

Department of Computer Engineering, College of Computer Engineering and Sciences, Prince Sattam bin 

Abdulaziz University, Al-Kharj 11942, Saudi Arabia 

h.mestiri@psau.edu.sa (corresponding author) 

 

Abdullah Alsir Mohamed 

Department of Computer Engineering, College of Computer Engineering and Sciences, Prince Sattam bin 

Abdulaziz University, Al-Kharj 11942, Saudi Arabia 

a.mhamed@psau.edu.sa 

 

Mohsen Machhout 

Electronics and Micro-Electronics Laboratory, Faculty of Sciences of Monastir, University of Monastir, 

Tunisia 

mohsen.machhout@fsm.rnu.tn 

Received: 1 January 2025 | Revised: 28 January 2025 and 17 February 2025 | Accepted: 27 February 2025 

Licensed under a CC-BY 4.0 license | Copyright (c) by the authors | DOI: https://doi.org/10.48084/etasr.10109 

ABSTRACT 

The PRESENT lightweight block cipher designed for resource-constrained environments exhibits 

vulnerabilities to fault injection attacks. By deliberately introducing errors during the computation, 

attackers can potentially recover secret keys or bypass security measures. Various fault models, including 

single- and multi-bit faults targeting different stages of the cipher, have been explored, demonstrating the 

feasibility of such attacks. Consequently, robust countermeasures, such as error detection codes, parity 

checks, and hardware redundancy, are essential to enhance the fault resistance of PRESENT 

implementations and maintain security in real-world deployments. This paper presents an enhanced fault 

detection scheme for the PRESENT lightweight block cipher, designed to provide a high level of protection 

against a wide range of fault injection attacks. The proposed scheme focuses on detecting both simple and 

multiple fault attacks, addressing scenarios that target one or more bytes. A comprehensive analysis of the 

detection capabilities is performed, considering various fault multiplicities and injection methods. This 

innovative approach contributes to the advancement of secure and reliable systems, in line with the focus 

of SGD 9 on fostering innovation. The proposed scheme is extensively evaluated through simulations, 

demonstrating its ability to detect a significant percentage of injected faults. A hardware implementation 

on a Xilinx Virtex5-XC5VFX70T FPGA platform is explored, analyzing the trade-off between security, 

area, and performance. The results show that the proposed scheme achieves high fault coverage while 

maintaining reasonable resource utilization without impacting operating frequency. A comparison with 

existing techniques highlights the advantages of the proposed approach. 

Keywords-security; cryptography; PRESENT block cipher; lightweight algorithm; fault attacks; encryption 

algorithm; secure communication   



Engineering, Technology & Applied Science Research Vol. 15, No. 2, 2025, 21982-21988 21983  
 

www.etasr.com Maatallah et al.: Enhancing IoT Security for Sustainable Development: A Parity Checking Approach … 

 

I. INTRODUCTION  

PRESENT lightweight cryptographic algorithms are 
essential for resource-constrained IoT devices, designed to 
provide secure communication and data protection without 
draining their limited power supply [1]. Its efficiency and 
simplicity make it ideal for a wide range of applications in the 
rapidly expanding IoT ecosystem. Lightweight cryptographic 
algorithms are also suitable for use in medical devices, 
ensuring the confidentiality and integrity of sensitive patient 
data. Furthermore, these algorithms can be utilized in industrial 
IoT devices to secure communication and prevent unauthorized 
access to critical infrastructure. Deploying the PRESENT 
cipher in a hardware implementation can increase its 
susceptibility to fault injection attacks [2-3]. These attacks 
exploit vulnerabilities in hardware implementations to induce 
faults and compromise security [4-8]. Therefore, robust 
countermeasures are crucial to ensure the reliability and 
security of these devices. Recent research has focused on 
developing efficient countermeasures against fault injection 
attacks on the PRESENT lightweight algorithm [9-11]. These 
studies have proposed various fault detection schemes, such as 
information redundancy, hardware redundancy, and temporal 
redundancy, to safeguard the PRESENT algorithm. 

In [9], a new design strategy was proposed for lightweight 
cryptographic primitives resistant to both side-channel and 
fault attacks, particularly relevant to resource-constrained IoT 
devices. This study focused on techniques such as fault space 
transformation, which uses redundancy and diffusion layers to 
make fault injection more challenging. Additionally, it 
highlighted the importance of designing security from the 
ground up, especially in resource-limited environments, and 
used AES-128 as a case study to illustrate the effectiveness of 
FST in increasing the Hamming distance between equivalent 
faults in original and redundant computations. The results of 
the experimental hardware implementation indicated that the 
unprotected PRESENT implementation operated at a frequency 
of 205 MHz, while the protected PRESENT version reached a 
frequency of 65.7 MHz. This corresponded to a frequency 
reduction of 67.9%. 

In [10], the effectiveness of concurrent error detection 
codes was investigated against Laser Fault Injection (LFI) 
attacks on FPGA-based cryptographic implementations. An 
LFI setup was used to target a CED-protected block cipher 
implemented on a Xilinx Virtex-5 FPGA. The results showed a 
high probability (99.293%) of inducing an even number of bit 
flips with a single laser pulse, rendering single-bit parity checks 
ineffective. Although randomized parity schemes offered better 
protection, non-linear codes did not significantly outperform 
linear codes, despite higher overhead. This study highlighted 
the limitations of standard CED against LFI and suggested that 
linear randomized parity codes offer a good balance between 
security and cost. 

In [11], a PLL/RO-based detection system was explored for 
LFI attacks on FPGAs. The ring oscillator's frequency, 
monitored by a phase-locked loop, was disrupted by laser 
attacks, triggering an alarm. Experimental results on a Xilinx 
Virtex-5 FPGA demonstrated a high detection rate of up to 

92.82% when protecting registers within a slice. Additionally, 
the countermeasure could detect attacks before they caused 
faulty cipher execution. Specifically, the lowest laser power to 
trigger the alarm was 64% of the laser's maximum power, 
while fault injection in data registers required at least 75% 
(with outliers) and mostly above 98%. This indicated a good 
security margin. Further analysis showed a detection rate of 
approximately 99.06%, meaning that only 0.94% of injections 
went undetected by the countermeasure and still affected the 
cipher. 

In [11], a low-area implementation of the PRESENT cipher 
was presented on an FPGA, enhancing security by 
incorporating a true random and a pseudo-random number 
generator for key generation. This approach generated unique 
keys for each round of encryption, increasing resistance against 
attacks. The design utilized a dual port ROM to optimize 
hardware resource utilization and achieve a higher operating 
frequency. The performance of this implementation was 
evaluated using metrics such as slice registers, flip-flops, 
LUTs, and power consumption. The quality of the recovered 
input image was also assessed using PSNR, SSIM, and MSE. 

In [13], various hardware architectures for the PRESENT 
block cipher were explored along with their respective FPGA 
implementations. Different design strategies were investigated, 
including iterative and pipelined architectures, with varying 
datapath widths, to optimize throughput and area efficiency. 
The trade-offs between these architectures were analyzed, 
considering factors such as latency, power consumption, and 
resource utilization on the FPGA. A comprehensive 
performance evaluation of these implementations was 
performed, offering insights into the suitability of different 
architectures for various resource-constrained environments. 

In [14], two novel parity-check-based methods were 
proposed for detecting timing fault injection attacks: mixed-
grained parity check and word recombination parity check. 
These methods aimed to balance security and overhead, 
addressing the limitations of traditional parity checks. The 
mixed-grained parity check applied fine-grained checks to 
security-critical operations and coarser checks elsewhere, while 
a word recombination parity check reorganized subwords 
before checking, effectively simulating fine-grained checks 
with lower overhead. These methods were evaluated on RC5, 
AES, and DES implementations, demonstrating improved fault 
coverage compared to traditional parity checks with 
manageable resource costs. 

This study presents an enhanced fault detection scheme for 
the PRESENT lightweight block cipher, based on the use of 
parity checking as a means of detecting faults. The proposed 
scheme focuses on detecting both simple and multiple fault 
attacks, addressing scenarios that target one or more bytes. This 
study contributes to the resilience and security of the 
PRESENT lightweight algorithm, aligning with the goals of 
SDG 9 to build resilient infrastructure, promote inclusive and 
sustainable industrialization, and foster innovation. A 
comprehensive analysis of the detection capabilities considered 
various fault multiplicities and injection methods. 



Engineering, Technology & Applied Science Research Vol. 15, No. 2, 2025, 21982-21988 21984  
 

www.etasr.com Maatallah et al.: Enhancing IoT Security for Sustainable Development: A Parity Checking Approach … 

 

II. BACKGROUND 

A. PRESENT Lightweight Block Cipher 

The PRESENT block cipher is a symmetric key algorithm 
that encrypts data in fixed-size blocks. It was designed by 
researchers at Orange Labs and is widely used in applications 
such as SSL/TLS for secure communication over the Internet 
[1]. PRESENT operates on a 64-bit block size and supports key 
lengths of 80 or 128 bits. Its lightweight design makes it well-
suited for resource-constrained devices such as RFID tags and 
sensor networks. PRESENT is known for its efficient 
performance and low memory requirements, making it ideal for 
applications with limited processing power and memory. 
Additionally, its resistance to various cryptanalytic attacks 
ensures the security of encrypted data. The PRESENT consists 
of a substitution-permutation network with 31 rounds, 
providing a high level of security against attacks. Its simplicity 
and efficiency make it a popular choice for embedded systems 
and IoT devices. The PRESENT round functions are: 
sBoxlayer, permutation layer (pLayer), and key addition layer 
(addRoundKey). These components work together to provide 
strong encryption while minimizing resource usage, making 
PRESENT a practical solution for devices with limited 
capabilities. The substitution layer (sBoxlayer) is responsible 
for the nonlinear mixing of the input data, increasing the 
complexity of the encryption process. The pLayer then shuffles 
the data to add another layer of confusion, making it even more 
difficult for attackers to decipher the encrypted information. 
Additionally, the addRoundKey layer introduces a unique key 
at each round to further enhance security and prevent 
unauthorized access to the encrypted data. Overall, the 
combination of these three components in the PRESENT round 
function creates a robust encryption scheme that is well-suited 
for securing IoT devices and systems.  

Algorithm 1: The PRESENT Algorithm [1] 

generateRoundKeys() 

for i=1 to 31 do 

  AddRoundKey(STATE,Ki) 

  sBoxLayer(STATE) 

  pLayer(STATE) 

end for 

AddRoundKey(STATE,K32) 

 

B. Fault Attacks 

Fault injection attacks, a critical threat to cryptographic 
systems, involve the deliberate introduction of errors during 
computation to manipulate the system's behavior and 
potentially expose sensitive information. These attacks utilize 
various methods, including clock and power glitching, 
electromagnetic and laser fault injection, and temperature 
variations, to disrupt the intended flow of operations [15]. By 
analyzing the resulting erroneous outputs, attackers can deduce 
secret keys, bypass security measures, cause denial-of-service 
conditions, or corrupt data. Protecting against these attacks 
requires a multilayered approach encompassing error detection 
codes, hardware redundancy, physical shielding, and 
specialized detection circuits, both in hardware and software 
[16]. 

III. PROPOSED FAULT DETECTION SCHEME 

A detection system is proposed to protect the execution of 
the sBoxLayer, which exploits the relationship between the 
input and output of this transformation set. For both the pLayer 
and addRoundKey, parity is used as an error detector during 
the operation process of these transformations. The data parity 
check is carried out at a low cost since the parity check is 
adopted for these transformations. Let �  be the number of 
bytes in a PRESENT data message. The proposed error 
detection system can be applied using two methods. 

 First method (� = 4): The error detection system is applied 
to half of the 64-bit block, specifically 32 bits. The data 
block is divided into two parts, and the system checks one 
part for errors at each step. This approach helps reduce 
complexity and accelerate detection by analyzing a smaller 
subset of data, although it provides only partial coverage at 
each stage. 

 Second method (� = 8): The detection system is applied to 
the entire 64-bit block (8 bytes). This means that all the data 
within the block is checked only once to detect errors. This 
method provides complete coverage for each verification 
system. Figure 1 presents the general structure of the 
proposed fault detection scheme. The detailed 
implementation of each present transformation follows. 

 

 

Fig. 1.  PRESENT fault detection scheme principle. 

A. Non-Linear Substitution Layer (sBoxLayer) Protection 

The sBoxLayer transformation, which is the only nonlinear 
transformation in the PRESENT_80 algorithm, consists of 16 
S-Boxes. These S-Boxes can be implemented either using 
lookup tables or combinatorial logic. The use of parity as an 
error detection code is straightforward due to the nonlinearity 
of the system transformation, which involves a substitution 
operation on each 4-bit block. 

Let � be the difference between the input � and the output 
�′ of the sublayer transformation. Since the value of a 4-bit 
block can vary between 0 and 15, the 16 possible values of � 
are pre-calculated and stored in a table. The difference �  is 
calculated as follows: 



Engineering, Technology & Applied Science Research Vol. 15, No. 2, 2025, 21982-21988 21985  
 

www.etasr.com Maatallah et al.: Enhancing IoT Security for Sustainable Development: A Parity Checking Approach … 

 

��,� � ��,� ⊕ ��,�
′     (1) 

with 0 � �,  �  3, ��,� , ��,�  , ��,�
�  ���2��. 

The errors are detected by the error detection flags. These 
flags are obtained by comparing the difference � with the value 

��,� ⊕ ��,�
′ . The 16 error detection flags (��,�) of the sublayer 

transformation can be calculated as follows: 

��,� � ��,� ⊕ ��,� ⊕ ��,�
′    (2) 

with 0� �, � 3, and ��,� ���2��. 

As shown in Figure 2, 16 error detection flags are generated 
during the execution of the sublayer transformation (an error 
detection flag for each S-Box). If one of the 16 error detection 
flags is set to 1, it means that at least one fault is detected 
during the execution of the sublayer transformation.  

 

 

Fig. 2.  Fault detection scheme for sBoxLayer. 

The proposed detection system is independent of the way 
the sublayer is implemented (LUT or combinatorial logic). 

B. Permutation Layer (pLayer) Protection 

The output of the pLayer transformation acts as input for 
the permutation transformation. The latter permutes the bits of 
the state, but it does not affect their values. In the case of � = 
8, the parity of the input �����  and the parity of the output 
������  of the permutation transformation are calculated as 
follows: 

����� � ∑ ��
� 
�!"   

������ � ∑ ∑ �#�$�%��&�'
 
�!"

$(
�!"    (3) 

The faults are detected by comparing ����� to ������ , and 
any differences found are reported as faults. When �=4, the 
fault detection scheme checks for faults in 32-bit data and 
����� and ������  are calculated as follows: 

����� � ∑ ∑ ��
 )%*& $
�! )%*

$
*!"   

������ � ∑ ∑ ∑ �#�$�%��&�'
 
�!"

+%*&,
�!+%*

$
*!"   (4) 

C. AddRoundKey Protection 

The AddRoundKey transformation calculates the modulo 2 
addition between the state matrix and the key round - �
 ./�;  0 � � � 632 to obtain the output of the PRESENT round. 
Consequently, the parity of the output round ����  can be easily 
predicted for � = 8 according to the following equations: 

�3 � ∑ -�
� 
�!"   

��� � ∑ -�
� 
�!" ⊕ ∑ ∑ �#�$�%��&�'

 
�!"

$(
�!" �  

� �3 ⊕ ������      (5) 

where �4 is the addRoundKey parity and ��  is the PRESENT 
round output parity. 

The faults are detected by comparing ���  to �3  � ������ , 
and any differences found are reported as faults. When � = 4, 
the fault detection scheme checks for faults in 32-bit data and 
�3 and ���  are calculated as follows: 

�3 � ∑ ∑ -�
 )%*& $
�! )%*

$
*!"   

��� � ∑ ∑ -�
 )%*& $
�! )%*

$
*!" ⊕ ∑ ∑ ∑ �#�$�%��&�'

 
�!"

+%*&,
�!+%*

$
*!" �  

�  �3 ⊕ ������     (6) 

IV. EVALUATION OF THE ERROR DETECTION 

CAPABILITY 

This section describes the simulation results to evaluate the 
resistance of the proposed system in the encryption process 
against the fault injection attack. The injected faults are of 
transient types and last for one clock cycle. 

A. Simple Fault Attacks 

First, the error detection capability of different systems was 
analyzed while ensuring that the attacker targets only one byte. 
The injected faults are of the transient type and last for one 
clock cycle. Figure 3 shows the simulation model. Each system 
is simulated by eight tests distinguished by the multiplicity of 
the faults. Each error model consists of 5 blocks, where 5 is 
the number of possible errors for each fault multiplicity. The 
faults were exhaustively injected into each byte, each 
operation, and at each round. Consequently, each error model is 
used 8×94 times, where 8 is the number of state matrix bytes 
and 94 is the number of all operations in the PRESENT rounds. 
Table I presents the results of the detection capability 
simulation using ModelSim 6.6. 

 

 
Fig. 3.  Simple fault attack simulation model. 

Table I shows the fault multiplicity, the number of errors 
injected for each fault multiplicity, and the number and 
percentage of undetected errors for each error detection system. 



Engineering, Technology & Applied Science Research Vol. 15, No. 2, 2025, 21982-21988 21986  
 

www.etasr.com Maatallah et al.: Enhancing IoT Security for Sustainable Development: A Parity Checking Approach … 

 

The number of errors injected for each fault multiplicity is 
calculated as follows: 

5 % 8 % 94     (7) 

where 5  is the number of possible faults for each fault 
multiplicity. Faults were exhaustively injected in every byte, 
every operation, and every round. Therefore, each fault was 
used 8×94 times, where 8 is the number of bytes of the state 
and 94 is the number of all operations in all rounds of the 
PRESENT. 

TABLE I.  SIMPLE FAULT ATTACK DETECTION CAPACITY 

Fault multiplicity 
Number of injected 

faults 

Percentage of 

undetected faults 

1 6016 0 (0%) 

2 21056 0 (0%) 

3 42112 0 (0%) 

4 52640 0 (0%) 

5 42442 0 (0%) 

6 21056 0 (0%) 

7 6016 0 (0%) 

8 752 0 (0%) 

9 - 0 (0%) 

 
As shown in Table I, all even and odd multiplicity errors on 

the 64-bit data are detected. The percentage of undetected 
errors reaches 0%, which means that the probability of 
detecting faults affecting a single byte is 100%. Since most 
fault injection attacks exploit faults affecting a single byte, the 
proposed system ensures a high level of security against these 
types of attacks. 

B. Multiple Fault Attacks 

In the second step, the detection capabilities of the error 
detection systems were analyzed while ensuring that the 
attacker targets more than one byte. This section evaluates the 
resistance of the proposed system by assuming that the attacker 
targets more than one octet at a time. 

 

 

Fig. 4.  Multiple fault attacks simulation model. 

The considered faults are of transient types, lasting for one 
clock cycle, with an error multiplicity ranging from 1 to 20 
bits. The simulation model described above and shown in 

Figure 4 was used. The proposed system was simulated by 21 
tests distinguished by the number of erroneous bits. During 
each trial, 500,000 faults were injected to assess the resistance 
of the proposed system. The affected bits were randomly 
chosen among the 64 bits of the state matrix. Table II presents 
the simulation results.  

TABLE II.  MULTIPLE FAULT ATTACKS DETECTION 
CAPACITY  

Fault multiplicity 
Undetected faults percentage (%) 

9 = 4 9 = 8 

2 4.7288 10.9991 

3 0 0 

4 0.6366 3.3761 

5 0 0 

6 0.1454 1.5724 

7 0 0 

8 0.0436 0.9798 

9 0 0 

10 0.0182 0.6828 

11 0 0 

12 0.0100 0.5370 

13 0 0 

14 0.0062 0.4562 

15 0 0 

16 0.0030 0.4174 

17 0 0 

18 0.0024 0.4060 

19 0 0 

20 0.0018 0.3830 

Random 0.2945 0.5213 

 
As shown in the �  = 4 column, all errors of odd 

multiplicity are detected. The percentage of undetected errors 
decreases inversely proportional to the number of erroneous 
bits. For the random fault test, the percentage of undetectable 
errors is approximately 0.2945%. The same data models and 
test conditions used in the previous tests were used to verify the 
proposed detection system. In the case of � = 8, all errors of 
odd order were detected, thus the percentage of undetectable 
errors decreased inversely proportional to the number of 
erroneous bits. In the Random faults case, the percentage of 
undetectable errors was approximately 0.5213%. During the 
execution of the permutation and addRoundKey functions, if 
the proposed system is applied to each 32-bit PRESENT data 
(� = 4), two error detection flags are generated to secure the 
encryption process. On the other hand, the protection of the 
entire 64-bit PRESENT data state data (�  = 8) generates a 
single error detection flag. In this case, the faults injected into 
64 bits of the data are not detected if their modulo 2 addition is 
equal to zero. However, in the case of M = 4, even if the 
modulo 2 addition of these faults is equal to zero and the faults 
affect at least two 32-bit columns, at least one of the two error 
detection flags is set to one. Figure 5 presents a comparison 
between the two proposed error detection scheme versions (� 
= 4 and � = 8), in terms of the percentage of undetected errors. 
Both systems were simulated with the same model and the 
same test conditions. Given that the values of the two tests 
were high, they are represented separately in a complementary 
graph. Thus, both systems detected all odd multiplicity errors. 
For the random fault test, the proposed system with � = 4 
achieved a lower rate of undetected faults. 



Engineering, Technology & Applied Science Research Vol. 15, No. 2, 2025, 21982-21988 21987  
 

www.etasr.com Maatallah et al.: Enhancing IoT Security for Sustainable Development: A Parity Checking Approach … 

 

 

Fig. 5.  Percentage of undetected multiple faults injected in the PRESENT module. 

V. HARDWARE IMPLEMENTATION OF THE 

PROPOSED FAULT DETECTION SCHEME 

The proposed error detection system was applied to the 
PRESENT algorithm. The implementation of PRESENT with 
and without the proposed error detection system was modeled 
using VHDL, simulated with ModelSim 6.6, and synthesized 
with Xilinx ISE 14.4. The FPGA platform used was the Xilinx 
Virtex5-XC5VFX70T. Table III presents the results of the 
hardware implementation. 

TABLE III.  PROPOSED FAULT DETECTION SCHEME: 
RESULTS AND COMPARISON 

Fault 

detection 

scheme 

FС(%) 

Area 

(Sliсеs 

LUTS) 

(Overhead) 

Area 

(Oссupiеd 

sliсеs) 

(Overhead) 

Frequency 

(MHz) 

(Degradation) 

Throughput 

(Mbps) 

(Degradation) 

Оriginаl - 345 134 381.018 908.42 

M = 8 99.4787 
380 

(10.145%) 
141 

(5.224%) 
381.018 

(0%) 
908.42 

(0%) 

M = 4 99.8527 
403 

(16.812%) 

163 

(21.642%) 
381.018 

(0%) 

908.42 

(0%) 

 
As shown in Table III, the error detection capability (FC), 

area, frequency, throughput, area overhead, and frequency 
degradation for the original and secure PRESENT were 
determined. The implementation of PRESENT without an error 
detection system occupies an area of 345 LUT slices and an 
area of 134 occupied slices at a frequency of 381.018 MHz. 
The protection of this implementation against fault attacks with 
the error detection system �= 4 results in an area overhead of 
approximately 16.812% and an increase of 21.642% in the 
occupied area. Although the proposed system generates an area 
overhead, the degradation in operating frequency remains 
constant. However, it provides an error detection capability of 
approximately 99.8527%. 

Thus, the proposed detection system achieves an effective 
trade-off between security level and hardware implementation 
performance, while ensuring a high level of security against 
fault injection attacks without affecting the operating 
frequency. Table IV compares the proposed fault detection 
schemes with previously published works. 

TABLE IV.  FAULT DETECTION SCHEME: COMPARISON 
(DECREASE IS DENOTED BY USING ‘-’ SIGN) 

Fault 

detection 

scheme 

Performance overhead (%) 

FС(%) 

Area 

(Sliсеs 

LUTS) 

Area 

(Oссupiеd 

sliсеs) 

Frequency 

(MHz) 

Throug. 

(Mbps) 

Power 

(mW) 

M = 8 99.4787 
380 

(10.145%) 
141 

(5.224%) 
381.018 

(0%) 
908.42 

(0%) 
298 

M = 4 99.8527 
403 

(16.812%) 

163 

(21.642%) 
381.018 

(0%) 

908.42 

(0%) 
312 

[9] - 204.651 179.675 -67.9 -67.9 - 

[10] 
99.29

3 
21.75 1.5 - - - 

[11] 92.82 - - - - - 

[12] - 102 - 612.208 1459.61 465.38 

[13] - 177 67 240 544.86 687 

 
Compared to existing countermeasures, such as [9-11], the 

proposed scheme exhibits superior fault coverage of 99.8527%, 
exceeding the 99.293% and 92.82% achieved by [10] and [11], 
respectively. Although the area overhead of 16.812% and the 
increase in occupied slices of 21.642% are higher than those of 
some alternatives, the proposed scheme offers a competitive 
balance between robust fault detection and resource utilization, 
especially considering the maintained operating frequency. 
This makes it particularly suitable for resource-constrained IoT 
devices where a high level of security is crucial. The system in 
[9] shows promise in terms of FC efficiency, but further 
optimization may be needed to reduce the overhead of 
occupied slices without sacrificing performance. The design 
proposed in [12], although using the smallest area (102 slices 
LUTS), achieves the highest frequency (612.208 MHz) and 
throughput (1459.61 Mbps). This high performance comes at 
the cost of increased power consumption (465.38 mW). The 
implementation in [13] presents a more balanced profile, with 
an area between �= 8 and �= 4. Its frequency (240 MHz) and 
throughput (544.86 Mbps) are lower than [12] but still surpass 
� = 8 and � = 4. However, the design in [13] has the highest 
power consumption (687 mW) despite not having the highest 
performance. Table V also shows that � = 8 and � = 4 offer 
the lowest power consumption among all designs, but at the 
expense of lower frequency and throughput compared to [12] 



Engineering, Technology & Applied Science Research Vol. 15, No. 2, 2025, 21982-21988 21988  
 

www.etasr.com Maatallah et al.: Enhancing IoT Security for Sustainable Development: A Parity Checking Approach … 

 

and [13]. In general, the choice between the different 
implementations depends on the specific requirements of the 
application, balancing performance, area, frequency, 
throughput, and power consumption. 

VI. CONCLUSION 

This paper presented an enhanced fault detection scheme 
for the PRESENT lightweight block cipher, employing 
dynamic parity checking with varying multiplicity parameters 
(� = 4 and � = 8). The proposed scheme demonstrated a high 
level of effectiveness against both simple and multiple fault 
injection attacks, achieving a 99.8527% fault coverage rate. 
This enhanced security contributes to the development of more 
resilient infrastructure for critical systems, aligning with the 
goals of SDG 9 to build resilient infrastructure, promote 
inclusive and sustainable industrialization, and foster 
innovation. The practicality of the proposed scheme based on 
parity makes it suitable for resource-constrained IoT devices 
deployed in such infrastructure. 

The hardware implementation on a Xilinx Virtex5-
XC5VFX70T FPGA platform demonstrated the practicality of 
the proposed scheme. While incurring a modest area overhead 
and an increase in occupied slices, the system maintained the 
original operating frequency. This represents a favorable trade-
off between security and performance, making the scheme 
suitable for resource-constrained IoT devices. Compared to 
existing countermeasures, the scheme exhibits superior fault 
coverage while maintaining competitive resource utilization. 

ACKNOWLEDGMENT 

The authors extend their appreciation to Prince Sattam bin 
Abdulaziz University for funding this research work 
through the project number (PSAU/2024/01/31267). 

REFERENCES 

[1] A. Bogdanov et al., "PRESENT: An Ultra-Lightweight Block Cipher," 
in Cryptographic Hardware and Embedded Systems - CHES 2007, 2007, 
pp. 450–466, https://doi.org/10.1007/978-3-540-74735-2_31. 

[2] J. Jebrane and S. Lazaar, "A performance comparison of lightweight 
cryptographic algorithms suitable for IoT transmissions," General 
Letters in Mathematics, vol. 10, no. 2, pp. 46–53, Jun. 2021, 
https://doi.org/10.31559/glm2021.10.2.5. 

[3] A. Kavitha et al., "A Novel Algorithm to Secure Data in New 
Generation Health Care System from Cyber Attacks Using IoT," 
International Journal of Electrical and Electronics Research, vol. 10, 
no. 2, pp. 270–275, Jun. 2022, https://doi.org/10.37391/ijeer.100236. 

[4] S. Sheikhpour, A. Mahani, and N. Bagheri, "Reliable advanced 
encryption standard hardware implementation: 32- bit and 64-bit data-
paths," Microprocessors and Microsystems, vol. 81, Mar. 2021, Art. no. 
103740, https://doi.org/10.1016/j.micpro.2020.103740. 

[5] A. Jain and U. Guin, "A Novel Tampering Attack on AES Cores with 
Hardware Trojans," in 2020 IEEE International Test Conference in Asia 
(ITC-Asia), Taipei, Taiwan, Sep. 2020, pp. 77–82, 
https://doi.org/10.1109/ITC-Asia51099.2020.00025. 

[6] H. Kwon, Y. B. Kim, S. C. Seo, and H. Seo, "High-Speed 
Implementation of PRESENT on AVR Microcontroller," Mathematics, 
vol. 9, no. 4, Jan. 2021, Art. no. 374, https://doi.org/10.3390/ 
math9040374. 

[7] K. Keerthi and C. Rebeiro, "FaultMeter: Quantitative Fault Attack 
Assessment of Block Cipher Software," IACR Transactions on 
Cryptographic Hardware and Embedded Systems, pp. 212–240, Mar. 
2023, https://doi.org/10.46586/tches.v2023.i2.212-240. 

[8] H. Mestiri, I. Barraj, T. Saidani, and M. Machhout, "Α PRESENT 
Lightweight Algorithm High-Level SystemC Modeling using AOP 
Approach," Engineering, Technology & Applied Science Research, vol. 
14, no. 5, pp. 16772–16777, Oct. 2024, https://doi.org/10.48084/ 
etasr.8417. 

[9] S. Patranabis et al., "Lightweight Design-for-Security Strategies for 
Combined Countermeasures Against Side Channel and Fault Analysis in 
IoT Applications," Journal of Hardware and Systems Security, vol. 3, 
no. 2, pp. 103–131, Jun. 2019, https://doi.org/10.1007/s41635-018-0049-
y. 

[10] J. Breier, W. He, D. Jap, S. Bhasin, and A. Chattopadhyay, "Attacks in 
Reality: the Limits of Concurrent Error Detection Codes Against Laser 
Fault Injection," Journal of Hardware and Systems Security, vol. 1, no. 
4, pp. 298–310, Dec. 2017, https://doi.org/10.1007/s41635-017-0020-3. 

[11] W. He, J. Breier, S. Bhasin, N. Miura, and M. Nagata, "Ring Oscillator 
under Laser: Potential of PLL-based Countermeasure against Laser Fault 
Injection," in 2016 Workshop on Fault Diagnosis and Tolerance in 
Cryptography (FDTC), Santa Barbara, CA, USA, Aug. 2016, pp. 102–
113, https://doi.org/10.1109/FDTC.2016.13. 

[12] T. Kowsalya, R. Ganesh Babu, B. D. Parameshachari, A. Nayyar, and R. 
Majid Mehmood, "Low Area PRESENT Cryptography in FPGA Using 
TRNG-PRNG Key Generation," Computers, Materials & Continua, vol. 
68, no. 2, pp. 1447–1465, 2021, https://doi.org/10.32604/cmc.2021. 
014606. 

[13] J. G. Pandey, T. Goel, and A. Karmakar, "Hardware architectures for 
PRESENT block cipher and their FPGA implementations," IET Circuits, 
Devices & Systems, vol. 13, no. 7, pp. 958–969, 2019, 
https://doi.org/10.1049/iet-cds.2018.5273. 

[14] M. Zhang, H. Li, P. Wang, and Q. Liu, "Parity Check Based Fault 
Detection against Timing Fault Injection Attacks," Electronics, vol. 11, 
no. 24, Jan. 2022, Art. no. 4082, https://doi.org/10.3390/ 
electronics11244082. 

[15] H. Mestiri and I. Barraj, "High-Speed Hardware Architecture Based on 
Error Detection for KECCAK," Micromachines, vol. 14, no. 6, Jun. 
2023, Art. no. 1129, https://doi.org/10.3390/mi14061129. 

[16] H. Mestiri, N. Benhadjyoussef, and M. Machhout, "Fault Attacks 
Resistant AES Hardware Implementation," in 2019 IEEE International 
Conference on Design & Test of Integrated Micro & Nano-Systems 
(DTS), Gammarth-Tunis, Tunisia, Apr. 2019, pp. 1–6, 
https://doi.org/10.1109/DTSS.2019.8914979. 

 


