Design of a Four-Element Array Antenna for 5G Cellular Wireless Networks

  • D. T. T. My Faculty of Engineering and Technology, Quy Nhon University, Vietnam
  • H. N. B. Phuong Quy Nhon University, Vietnam
  • T. T. Huong Huong Ban Mai Education Company Limited, Da Nang, Vietnam
  • B. T. M. Tu University of Da Nang, University of Science and Technology, Vietnam
Volume: 10 | Issue: 5 | Pages: 6259-6263 | October 2020 | https://doi.org/10.48084/etasr.3771

Abstract

This paper proposes the design of a four-element array planar antenna based on a single antenna that combines the Double Positive (DPS) and Epsilon Negative (ENG) materials. The single antenna consists of a microstrip segment (which is equivalent to a DPS material) connected to a grounded microstrip segment (which is equivalent to an ENG material). T-Junction power dividers with one-input and two-output ports are used for feeding the two-element and the four-element array antennas. The proposed array antenna is designed to operate optimally at 30GHz frequency under Finite Element Method (FEM)-based simulation. The obtained simulation results show that the proposed array antennas have good radiation performances, in which the four-element array antenna has a -10dB bandwidth ranging from 28.7 to 33.4GHz and 12.9dBi gain.

Keywords: Double Positive (DPS) material, Epsilon Negative (ENG) material, array antennas, zeroth-order resonance, 5G systems

Downloads

Download data is not yet available.

References

H. Alsaif, "Extreme Wide Band MIMO Antenna System for Fifth Generation Wireless Systems," Engineering, Technology & Applied Science Research, vol. 10, no. 2, pp. 5492-5495, Apr. 2020. DOI: https://doi.org/10.48084/etasr.3413

M. Azhar and A. Shabbir, "5G Networks: Challenges and Techniques for Energy Efficiency," Engineering, Technology & Applied Science Research, vol. 8, no. 2, pp. 2864-2868, Apr. 2018. DOI: https://doi.org/10.48084/etasr.1623

S. Zhao, Z. Qian, and M. Xiao, "Microwave zeroth-order resonance antenna loaded with a pair of DPS and ENG materials," in 2009 International Conference on Wireless Communications Signal Processing, Nanjing, China, Nov. 2009. DOI: https://doi.org/10.1109/WCSP.2009.5371675

J.-H. Park, Y.-H. Ryu, J.-G. Lee, and J.-H. Lee, "Epsilon Negative Zeroth-Order Resonator Antenna," IEEE Transactions on Antennas and Propagation, vol. 55, no. 12, pp. 3710-3712, Dec. 2007. DOI: https://doi.org/10.1109/TAP.2007.910505

J. H. Park, Y. H. Ryu, J. G. Lee, and J. H. Lee, "A zeroth-order resonator antenna using epsilon negative meta-structured transmission line," in 2007 IEEE Antennas and Propagation Society International Symposium, Honolulu, HI, USA, Jun. 2007, pp. 3480-3483.

M. A. Antoniades and G. V. Eleftheriades, "A broadband series power divider using zero-degree metamaterial phase-shifting lines," IEEE Microwave and Wireless Components Letters, vol. 15, no. 11, pp. 808-810, Nov. 2005. DOI: https://doi.org/10.1109/LMWC.2005.859007

A. Sanada, C. Caloz, and T. Itoh, "Novel zeroth-order resonance in composite right/left- handed transmission line resonators," in 2003 Asia-Pacific Microwave Conference, Seoul, Korea, Nov. 2003, vol. 3, pp. 1588-1591.

J.-G. Lee and J.-H. Lee, "Zeroth Order Resonance Loop Antenna," IEEE Transactions on Antennas and Propagation, vol. 55, no. 3, pp. 994-997, Mar. 2007. DOI: https://doi.org/10.1109/TAP.2007.891875

N. K. Kiem, H. N. B. Phuong, Q. N. Hieu, and D. N. Chien, "A Novel Metamaterial MIMO Antenna with High Isolation for WLAN Applications," International Journal of Antennas and Propagation, vol. 2015, Jul. 2015, Art. No. e851904. DOI: https://doi.org/10.1155/2015/851904

D. M. Pozar, Microwave Engineering, 4th ed. Wiley, 2011.

Y. Feng, B. Yang, Y. Ji, and J. Zhou, "A 28GHz Millimeter-Wave Antenna Array with SIW Feeding Network," in 2019 International Conference on Microwave and Millimeter Wave Technology (ICMMT), Guangzhou, China, May 2019. DOI: https://doi.org/10.1109/ICMMT45702.2019.8992115

J. Khan, D. A. Sehrai, and U. Ali, "Design of Dual Band 5G Antenna Array with SAR Analysis for Future Mobile Handsets," Journal of Electrical Engineering & Technology, vol. 14, no. 2, pp. 809-816, Mar. 2019. DOI: https://doi.org/10.1007/s42835-018-00059-9

Metrics

Abstract Views: 101
PDF Downloads: 69

Metrics Information
Bookmark and Share

Most read articles by the same author(s)