Surface Quality of Ti-6Al-4V Titanium Alloy Parts Machined by Laser Cutting

  • A. Boudjemline College of Engineering, University of Hail, Saudi Arabia
  • M. Boujelbene College of Engineering of Hail, University of Hail, Saudi Arabia
  • E. Bayraktar LISMMA, Supméca – Institut Supérieur de Mécanique de Paris, France
Keywords: laser cutting, titanium alloy, cutting speed, gas pressure, maximum height of surface roughness


This paper investigates high power CO2 laser cutting of 5mm-thick Ti-6Al-4V titanium alloy sheets, aiming to evaluate the effects of various laser cutting parameters on surface roughness. Using multiple linear regression, a mathematical model based on experimental data was proposed to predict the maximum height of the surface Sz as a function of two laser cutting parameters, namely cutting speed and assist-gas pressure. The adequacy of the proposed model was validated by Analysis Of Variance (ANOVA). Experimental data were compared with the model’s data to verify the capacity of the proposed model. The results indicated that for fixed laser power, cutting speed is the predominant cutting parameter that affects the maximum height of surface roughness.


Download data is not yet available.


K. Gupta and R. F. Laubscher, “Sustainable machining of titanium alloys: A critical review,” Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, vol. 231, no. 14, pp. 2543–2560, Dec. 2017, doi: 10.1177/0954405416634278.

Ż. A. Mierzejewska, R. Hudák, and J. Sidun, “Mechanical Properties and Microstructure of DMLS Ti6Al4V Alloy Dedicated to Biomedical Applications,” Materials, vol. 12, no. 1, p. 176, Jan. 2019, doi: 10.3390/ma12010176.

M. A. Elfghi and M. Gunay, “Mechanical Properties of Powder Metallugry (Ti-6Al-4V) with Hot Isostatic Pressing,” Engineering, Technology & Applied Science Research, vol. 10, no. 3, pp. 5637–5642, Jun. 2020.

M. Boujelbene, “Investigation and modeling of the tangential cutting force of the Titanium alloy Ti-6Al-4V in the orthogonal turning process,” Procedia Manufacturing, vol. 20, pp. 571–577, Jan. 2018, doi: 10.1016/j.promfg.2018.02.085.

C. Leyens and M. Peters, Titanium and Titanium Alloys: Fundamentals and Applications. Weinheim, Germany: Wiley-VCH, 2003.

E. O. Ezugwu, “Key improvements in the machining of difficult-to-cut aerospace superalloys,” International Journal of Machine Tools and Manufacture, vol. 45, no. 12, pp. 1353–1367, Oct. 2005, doi: 10.1016/j.ijmachtools.2005.02.003.

C. Veiga, J. P. Davim, A. J. R. Loureiro, “Review on machinability of titanium aloys: The process perspective,” Reviews on Advanced Materials Science, vol. 34, no. 2, pp. 148–164, 2013.

O. A. Shams, A. Pramanik, and T. T. Chandratilleke, “Thermal-Assisted Machining of Titanium Alloys,” in Advanced Manufacturing Technologies: Modern Machining, Advanced Joining, Sustainable Manufacturing, K. Gupta, Ed. Cham, Switzerland: Springer, 2017, pp. 49–76.

S. Anjum, M. Shah, N. A. Anjum, S. Mehmood, and W. Anwar, “Machining and Surface Characteristics of AISI 304L After Electric Discharge Machining for Copper and Graphite Electrodes in Different Dielectric Liquids,” Engineering, Technology & Applied Science Research, vol. 7, no. 4, pp. 1765–1770, Aug. 2017.

M. Boujelbene, “Process Capability and Average Roughness in Abrasive Water Jet Cutting Process of Stainless Steel,” Engineering, Technology & Applied Science Research, vol. 8, no. 3, pp. 2931–2936, Jun. 2018.

Lv. Shanjin and W. Yang, “An investigation of pulsed laser cutting of titanium alloy sheet,” Optics and Lasers in Engineering, vol. 44, no. 10, pp. 1067–1077, Oct. 2006, doi: 10.1016/j.optlaseng.2005.09.003.

J. P. Davim, Machining of Titanium Alloys. Berlin, Germany: Springer-Verlag, 2014.

A. K. Pandey and A. K. Dubey, “Modeling and optimization of kerf taper and surface roughness in laser cutting of titanium alloy sheet,” Journal of Mechanical Science and Technology, vol. 27, no. 7, pp. 2115–2124, Jul. 2013, doi: 10.1007/s12206-013-0527-7.

M. M. Noor et al., “Prediction Modelling of Surface Roughness for Laser Beam Cutting on Acrylic Sheets,” Advanced Materials Research, vol. 83–86, pp. 793–800, Dec. 2009, doi: 10.4028/

I. Miraoui, M. Boujelbene, and E. Bayraktar, “Effects of Laser Cutting Main Parameters on Microhardness and Microstructure Changes of Stainless Steel,” Advanced Materials Research, vol. 664, pp. 811–816, Feb. 2013, doi: 10.4028/

S. Chaki, S. Ghosal, Assisted Oxygen (LASOX) Cutting: A Soft Computing Based Approach. Cham, Switzerland: Springer, 2019.

A. K. Dubey and V. Yadava, “Laser beam machining—A review,” International Journal of Machine Tools and Manufacture, vol. 48, no. 6, pp. 609–628, May 2008, doi: 10.1016/j.ijmachtools.2007.10.017.

I. Miraoui, M. Boujelbene, and E. Bayraktar, “Analysis of cut surface quality of sheet metals obtained by laser machining: thermal effects,” Advances in Materials and Processing Technologies, vol. 1, no. 3–4, pp. 633–642, Feb. 2016, doi: 10.1080/2374068X.2016.1147759.

K. Kumar, D. Zindani, and J. P. Davim, Advanced Machining and Manufacturing Processes. Cham, Switzerland: Springer, 2018.

M. Douiri, M. Boujelbene, E. Bayraktar, and S. Ben Salem, “A Study of the Surface Integrity of Titanium Alloy Ti-6Al-4V in the Abrasive Water Jet Machining Process,” Mechanics of Composite, Hybrid and Multifunctional Materials, vol. 5, pp. 221–228, Oct. 2018, doi: 10.1007/978-3-319-95510-0_27.

A. Riveiro, F. Quintero, F. Lusquiños, R. Comesaña, and J. Pou, “Influence of assist gas nature on the surfaces obtained by laser cutting of Al–Cu alloys,” Surface and Coatings Technology, vol. 205, no. 7, pp. 1878–1885, Dec. 2010, doi: 10.1016/j.surfcoat.2010.08.058.

B. El Aoud, M. Boujelbene, E. Bayraktar, S. Ben Salem, and A. Boudjemline, “Experimental Comparison of the Microstructure and Surface Roughness in CO2 Laser Cutting of the Titanium Alloy Ti–6Al–4V and the Pure Titanium Ti,” Mechanics of Composite, Hybrid and Multifunctional Materials, Volume 5, vol. 5, pp. 249–255, Oct. 2018, doi: 10.1007/978-3-319-95510-0_31.

A. Kumar Dubey and V. Yadava, “Multi-objective optimisation of laser beam cutting process,” Optics & Laser Technology, vol. 40, no. 3, pp. 562–570, Apr. 2008, doi: 10.1016/j.optlastec.2007.09.002.

I. Miraoui, M. Boujelbene, and E. Bayraktar, “Analysis of Roughness and Heat Affected Zone of Steel Plates Obtained by Laser Cutting,” Advanced Materials Research, vol. 974, pp. 169–173, Jun. 2014, doi: 10.4028/

W. M. Steen and J. Mazumder, Laser Material Processing, 4th ed. London, UK: Springer Science & Business Media, 2010.

A. S. Guldibi and H. Demir, “Aging Effect on Microstructure and Machinability of Corrax Steel,” Engineering, Technology & Applied Science Research, vol. 10, no. 1, pp. 5168–5174, Feb. 2020.

M. Boujelbene, “Influence of the CO2 laser cutting process parameters on the Quadratic Mean Roughness Rq of the low carbon steel,” Procedia Manufacturing, vol. 20, pp. 259–264, Jan. 2018, doi: 10.1016/j.promfg.2018.02.038.

B. S. Yilbas, S. S. Akhtar, E. Bayraktar, and Z. M. Gasem, “Laser Cutting of Thin Aluminum and Silicon Alloy: Influence of Laser Power on Kerf Width,” Advanced Materials Research, vol. 445, pp. 442–447, Jan. 2012, doi: 10.4028/

D. Aroussi, B. Aour, and A. S. Bouaziz, “A Comparative Study of 316L Stainless Steel and a Titanium Alloy in an Aggressive Biological Medium,” Engineering, Technology & Applied Science Research, vol. 9, no. 6, pp. 5093–5098, Dec. 2019.

K. A. Ghany and M. Newishy, “Cutting of 1.2mm thick austenitic stainless steel sheet using pulsed and CW Nd:YAG laser,” Journal of Materials Processing Technology, vol. 168, no. 3, pp. 438–447, Oct. 2005, doi: 10.1016/j.jmatprotec.2005.02.251.

L. D. Scintilla, G. Palumbo, D. Sorgente, and L. Tricarico, “Fiber laser cutting of Ti6Al4V sheets for subsequent welding operations: Effect of cutting parameters on butt joints mechanical properties and strain behaviour,” Materials & Design, vol. 47, pp. 300–308, May 2013, doi: 10.1016/j.matdes.2012.12.014.

K. Jarosz, P. Löschner, and P. Niesłony, “Effect of Cutting Speed on Surface Quality and Heat-affected Zone in Laser Cutting of 316L Stainless Steel,” Procedia Engineering, vol. 149, pp. 155–162, Jan. 2016, doi: 10.1016/j.proeng.2016.06.650.

D. J. Kotadiya, J. M. Kapopara, A. R. Patel, C. G. Dalwadi, and D. H. Pandya, “Parametric analysis of process parameter for Laser cutting process on SS-304,” Materials Today: Proceedings, vol. 5, no. 2, Part 1, pp. 5384–5390, Jan. 2018, doi: 10.1016/j.matpr.2017.12.124.

K. Rajesh, V. V. Murali Krishnam Raju, S. Rajesh, and N. Sudheer Kumar Varma, “Effect of process parameters on machinability characteristics of CO2 laser process used for cutting SS-304 Stainless steels,” Materials Today: Proceedings, vol. 18, pp. 2065–2072, Jan. 2019, doi: 10.1016/j.matpr.2019.06.261.

D. Teixidor, J. Ciurana, and C. A. Rodriguez, “Dross formation and process parameters analysis of fibre laser cutting of stainless steel thin sheets,” The International Journal of Advanced Manufacturing Technology, vol. 71, no. 9, pp. 1611–1621, Apr. 2014, doi: 10.1007/s00170-013-5599-0.

N. Rajaram, J. Sheikh-Ahmad, and S. H. Cheraghi, “CO2 laser cut quality of 4130 steel,” International Journal of Machine Tools and Manufacture, vol. 43, no. 4, pp. 351–358, Mar. 2003, doi: 10.1016/S0890-6955(02)00270-5.

B. T. Rao, R. Kaul, P. Tiwari, and A. K. Nath, “Inert gas cutting of titanium sheet with pulsed mode CO2 laser,” Optics and Lasers in Engineering, vol. 43, no. 12, pp. 1330–1348, Dec. 2005, doi: 10.1016/j.optlaseng.2004.12.009.

D. C. Montgomery and G. C. Runger, Applied Statistics and Probability for Engineers. Hoboken, NJ, USA: John Wiley & Sons, 2010.

S. A. Lesik, Applied Statistical Inference with MINITAB®, Second Edition. Boka Raton, FL, USA: CRC Press, 2018.

P. G. Mathews, Design of Experiments with MINITAB. Milwaukee, WI, USA: ASQ Quality Press, 2005.

D. C. Montgomery, Design and Analysis of Experiments. Hoboken, NJ, USA: John Wiley & Sons, 2017.

D. C. Montgomery, E. A. Peck, and G. G. Vining, Introduction to Linear Regression Analysis, 5th ed. Hoboken, NJ, USA: John Wiley & Sons, 2012.


Abstract Views: 58
PDF Downloads: 47

Metrics Information
Bookmark and Share