Effect of Iron Additives on the Microstructure of Hydroxyapatite

  • G. A. Gamal College of Engineering, Qassim University, Saudi Arabia
  • F. A. Al-Mufadi College of Engineering, Qassim University, Saudi Arabia
  • A. H. Said Department of Physics, South Valley University, Qena, Egypt
Volume: 3 | Issue: 6 | Pages: 532-539 | December 2013 | https://doi.org/10.48084/etasr.369

Abstract

In this article, some Fe (III) doped hydroxyapatite samples (FeHAp) were prepared using the wet chemical method. The prepared samples were characterized via the use of X-ray diffraction (XRD) and scanning electron microscopy (SEM). Detailed structural analysis were done by  Scherrer and Williamson–Hall plot methods to detect the effect of iron on the structure of hydroxyapatite (HAp). XRD patterns showed that all samples were single phased HAp. Relations between the Fe content and the deformation of the lattice parameters, dislocation density, grain size, microstrain, crystallinity were investigated. The presence of iron in the HAp lattice is found to decrease both the crystal size and the dislocation density. Further results are presented and discussed.

Keywords: Hydroxyapatite, Lattice parameters, Dislocation density, Crystallite size, Microstrain

Downloads

Download data is not yet available.

References

A Nakahira, S Nakamura, M. Horimoto, “Synthesis of modified hydroxyapatite (HAP) substituted with fe ion for DDS application”, IEEE Transactions on Magnetics, Vol. 43, No. 6, pp. 2465-2467, 2007 DOI: https://doi.org/10.1109/TMAG.2007.894358

C. Hou, S. Hou, Y. Hsueh, J. Lin, H. Wu, F. Lin, “The in vivo performance of biomagnetic hydroxyapatite nanoparticles in cancer hyperthermia therapy”, Biomaterials, Vol. 30, No. 23-24, pp. 3956-3960, 2009 DOI: https://doi.org/10.1016/j.biomaterials.2009.04.020

W. Pon-On, S. Meejoo, I. Tang, “Incorporation of iron into nano hydroxyapatite particles synthesized by the microwave process”, International Journal of Nanoscience, Vol. 6, No. 1, pp. 9-16, 2007 DOI: https://doi.org/10.1142/S0219581X07004262

R, Morrissey, L. M. Rodriguez-Lorenzo, K. A. Gross, “Influence of ferrous iron incorporation on the structure of hydroxyapatite”, Journal of Materials Science: Materials in Medicine, Vol. 16, No. 5, pp. 387-392, 2005 DOI: https://doi.org/10.1007/s10856-005-6976-5

F. P. Filho, R. E. F. Q. Nogueira, M. P. F. Graca, M. A. Valente, A. S. B. Sombra, C. C. Silva, “Structural and mechanical study of the sintering effect in hydroxyapatite doped with iron oxide”, Physica B: Condensed Matter, Vol. 403, No. 19-20, pp. 3826-3829, 2008 DOI: https://doi.org/10.1016/j.physb.2008.07.017

O. Kuda, N. Pinchuk, L. Ivanchenko, O. Parkhomey, O. Sych, M. Leonowicz, R. Wroblewski, E. Sowka, “Effect of Fe3O¬4, Fe and Cu doping on magnetic properties and behaviour in physiological solution of biological hydroxyapatite/glass composites”, Journal of Materials Processing Technology, Vol. 209, No. 4, pp. 1960-1964, 2009 DOI: https://doi.org/10.1016/j.jmatprotec.2008.04.061

Y. Li, C. T. Nam, C. P. Ooi, “Iron (III) and manganese (II) substituted hydroxyapatite nanoparticles: characterization and cytotoxicity analysis”, Journal of Physics: Conference Series, Vol. 187, No. 012024, pp. 1-8, 2009 DOI: https://doi.org/10.1088/1742-6596/187/1/012024

C. Mirestean, H. Mocuta, R. V. F. Turcu, G. Borodi, S. Simon, “Nanostructurated materials for hyperthermia treatment of bone tumors”, Journal of Optoelectronics and Advanced Materials, Vol. 9, No. 3, pp. 764-767, 2007

Y. Li, J. Widodo, S. Lim, C. P. Ooi, “Synthesis and cytocompatibility of manganese (II) and iron (III) substituted hydroxyapatite nanoparticles”, Journal of Materials Science, Vol. 47, No. 2, pp. 754-763, 2012 DOI: https://doi.org/10.1007/s10853-011-5851-7

K. Zuo, Y. Zeng, D. Jiang, “Synthesis and magnetic property of iron ions-doped hydroxyapatite”, Journal of Nanoscience and Nanotechnology, Vol. 12, No. 9, pp. 7096-7100, 2012 DOI: https://doi.org/10.1166/jnn.2012.6578

F. Peng, E. Veilleux, M. Schmidt, M. Wei, “Synthesis of hydroxyapatite nanoparticles with tailorable morphologies and carbonate substitutions using a wet precipitation method”, Journal of Nanoscience and Nanotechnology, Vol. 12, No. 3, pp. 2774-2778, 2012 DOI: https://doi.org/10.1166/jnn.2012.5714

I. Mayer, O. Jacobsohn, T. Niazov, J. Werckmann, M. Iliescu, M. Richard-Plouet, O. Burghaus, D. Reinnen, “Manganese in Precipitated Hydroxyapatites”, European Journal of Inorganic Chemistry, Vol. 2003, No. 7, pp. 1445-1451, 2003 DOI: https://doi.org/10.1002/ejic.200390188

E Gyorgy, P. Toricelli, G. Socol, M Iliescu, I Mayer, I. N. Mihailescu, A. Bigi, J. Werckmann, “Biocompatible Mn2+-doped carbonated hydroxyapatite thin films grown by pulsed laser deposition”, Journal of Biomedical Matterials Research, Vol. 71A, No. 2, pp. 353-358, 2004 DOI: https://doi.org/10.1002/jbm.a.30172

T. J. Webster, E. A. Massa-Schlueter, J. L. Smith, E. B. Slamovich, “Osteoblast response to hydroxyapatite doped with divalent and trivalent cations”, Biomaterials, Vol. 25, No. 11, pp. 2111-2121, 2004 DOI: https://doi.org/10.1016/j.biomaterials.2003.09.001

I. Cacciotti, A. Bianco, M. Lombardi, L. Montanaro, “Mg-substituted hydroxyapatite nanopowders: Synthesis, thermal stability and sintering behaviour”, Journal of the European Ceramic Society, Vol. 29, No. 14, pp. 2969-2978, 2009 DOI: https://doi.org/10.1016/j.jeurceramsoc.2009.04.038

C. Suryanarayana, M. Grant Norton, X-Ray Diffraction: A Practical Approach, Springer, 1998. DOI: https://doi.org/10.1007/978-1-4899-0148-4

A. A. Ebnalwaled, M. Abou Zied, “Microstructure and mechanical properties of Nano-crystalline Al-Mg-Mn system”, Journal of Nano Research, Vol. 9, pp. 61-68, 2010 DOI: https://doi.org/10.4028/www.scientific.net/JNanoR.9.61

M. Wilkens, “The determination of density and distribution of dislocations in deformed single crystals from broadened X-ray diffraction profiles”, Physica Status Solidi A, Vol. 2, No. 2, pp. 359-370, 1970 DOI: https://doi.org/10.1002/pssa.19700020224

T. Leventouri, C. E. Bunaciu, V. Perdikatsis, “Neutron powder diffraction studies of silicon-substituted hydroxyapatite”, Biomaterials, Vol. 24, No. 23, pp. 4205-4211, 2003 DOI: https://doi.org/10.1016/S0142-9612(03)00333-8

L. Borum-Nicholas, O. C. Wilson Jr, “Surface modification of hydroxyapatite. Part I. Dodecyl alcohol”, Biomaterials, Vol. 24, No. 21, pp. 3671-3679, 2003 DOI: https://doi.org/10.1016/S0142-9612(03)00239-4

C. C. Ribeiro, I. Gibson, M. A. Barbosa, “The uptake of titanium ions by hydroxyapatite particles-structural changes and possible mechanisms”, Biomaterials, Vol. 27, No. 9, pp. 1749-1761, 2006 DOI: https://doi.org/10.1016/j.biomaterials.2005.09.043

J. Wang, T. Nonami, K. Yubata, “Syntheses, structures and photophysical properties of iron containing hydroxyapatite prepared by a modified pseudo-body solution”, Journal of Materials Science: Materials in Medicine, Vol. 19, No. 7, pp. 2663-2667, 2008 DOI: https://doi.org/10.1007/s10856-007-3365-2

P. Guggenbuhl, R. Filmon, G. Mabilleau, M. F. Basle, D. Chappard, “Iron inhibits hydroxyapatite crystal growth in vitro”, Metabolism, Vol. 57, No. 7, pp. 903-910, 2008 DOI: https://doi.org/10.1016/j.metabol.2008.02.004

E. Landi, G. Celotti, G. Logroscino, A. Tampieri, “Carbonated hydroxyapatite as bone substitute, Journal of the European Ceramic Society, Vol. 23, No. 15, pp. 2931-2937, 2003 DOI: https://doi.org/10.1016/S0955-2219(03)00304-2

M. S. Choudry, M. Dollar, J. A. Eastman, “Nanocrystalline NiAl-processing, characterization and mechanical properties”, Materias Science and Enginerring A, Vol. 256, No. 1-2, pp. 25-33, 1998 DOI: https://doi.org/10.1016/S0921-5093(98)00810-7

W. A. Jesser, D. Kuhlmann-Wilsdorf, “On the theory of interfacial energy and elastic strain of epitaxial overgrowths in parallel alignment on single crystal substrates”, Physica Status Solidi B, Vol. 19, No. 1, pp. 95–105, 1967 DOI: https://doi.org/10.1002/pssb.19670190110

Metrics

Abstract Views: 552
PDF Downloads: 196

Metrics Information
Bookmark and Share

Most read articles by the same author(s)