Numerical Comparison of Triangular and Sinusoidal External Vibration Effects on the 3D Porous Drying Process

  • N. Ben Khedher Mechanical Engineering Department, College of Engineering, Hail University, Saudi Arabia | Laboratoire d'Etudes des Systemes, Thermiques et Energetiques, Ecole Nationale d'Ingenieurs de Monastir, University of Monastir, Monastir, Tunisia
  • R. Ramzi Thermal and Energy Systems Studies Laboratory, National School of Engineers of Monastir, University of Monastir, Tunisia
  • I. A. Alatawi Mechanical Engineering Department, College of Engineering, University of Hail, Saudi Arabia


Drying is one of the most energy-intensive industrial processes. One of the techniques aiming to reduce energy consumption is the vibration technique which is generally employed to intensify the heat and mass transfer process. In this respect, this paper presents a three-dimensional numerical model to study the external vibration effects on the drying process of a porous medium. The model is based on a comparison of heat and mass transfer phenomena that arise during vibrating drying of unsaturated porous medium for two cases: triangular and sinusoidal external vibrations. The three-dimensional unstructured Control Volume Finite Element Method (CVFEM) is employed to simulate the vibrating drying. Numerical results of the time evolution of temperature, liquid saturation, pressure, and water content are compared and analyzed for the two cases.

Keywords: external vibration, vibrating drying, unsaturated porous medium, CVFEM


Download data is not yet available.


G. Musielak, D. Mierzwa, J. Kroehnke, “Mechanisms of drying acceleration by ultrasounds”, 19th International Drying Symposium, Lyon, France, August 24–27, 2014

V. Acosta, J. Bon, E. Riera, A. Pinto, “Ultrasonic drying processing chamber”, Physics Procedia, Vol. 70, pp. 854-857, 2015 DOI:

S. J. Kowalski, “Ultrasound in wet materials subjected to drying: A modelling study”, International Journal of Heat and Mass Transfer, Vol. 84, pp. 998-1007, 2015 DOI:

J. Kroehnke, J. Szadzińska, E. Radziejewska-Kubzdela, R. Biegańska-Marecik, G. Musielak, “Ultrasound- and microwave-assisted convective drying of carrots: Process kinetics and product's quality analysis”, Ultrasonics Sonochemistry, Vol. 48, pp. 249-258, 2018 DOI:

S. M. Beck, H. Sabarez, V. Gaukel, K. Knoerzer, “Enhancement of convective drying by application of airborne ultrasound: A response surface approach”, Ultrasonics Sonochemistry, Vol. 21, pp. 2144-2150, 2014 DOI:

J. Colin, W. Chen, J. Casalinho, M. E. A. Ben Amara, S. Ben Nasrallah, M. Stambouli, P. Perre, “Drying intensification by vibration: fundamental study of liquid water inside a pore”, 21thInternational Drying Symposium, Valencia, Spain, September 11-14, 2018 DOI:

E. A. Kolchanova, N. V. Kolchanov, “Vibration effect on the onset of thermal convection in an inhomogeneous porous layer underlying a fluid layer”, International Journal of Heat and Mass Transfer, Vol. 106, pp. 47-60, 2017 DOI:

E. H. Zidi, A. Hasseine, N. Moummi, “The effect of vertical vibrations on heat and mass transfers through natural convection in partially porous cavity”, Arabian Journal for Science and Engineering, Vol. 43, pp. 2195-2204, 2018 DOI:

R. Rzig, N. Ben Khedher, S. Ben Nasrallah, “A 3-D numerical heat and mass transfer model for simulating the vibration effects on drying process”, Heat Transer Asian Research, Vol. 46, pp. 1204-1221, 2017 DOI:

A. V. Luikov, “Systems of differential equations of heat and mass transfer in capillary porous bodies (review)”, International Journal of Heat and Mass Transfer, Vol. 18, No. 1, pp. 1–14, 1975 DOI:

S. Whitaker, “A theory of drying”, Advances in Heat Transfer, Vol. 13, pp. 119-203, 1977 DOI:

N. Ben Khedher, “Numerical study of the thermal behavior of a composite phase change material (PCM) room”, Engineering, Technology & Applied Science Research, Vol. 8, No. 22, pp. 2663-2667, 2018 DOI:

R. Rzig, N. Ben Khedher, S. Ben Nasrallah, “Three-dimensional simulation of mass and heat transfer in drying unsaturated porous medium”, Heat Transfer Research, Vol. 48, No. 11, pp. 985-1005, 2017 DOI:

A. Latreche, M. Djezzar, “Numerical study of natural convective heat and mass transfer in an inclined porous media”, Engineering, Technology & Applied Science Research, Vol. 8, No. 4, pp. 3223-3227, 2018 DOI:

B. R. Balliga, S. V. Patankar, “A new finite-element formulation for convection–diffusion problems”, Numerical Heat Transfer, Vol. 3, No. 4, pp. 393-409, 1980 DOI:

B. R. Balliga, S. V. Patankar, “A control-volume finite element method for two-dimensional fluid flow and heat transfer”, Numerical Heat Transfer, Vol. 6, No. 3, pp. 245–261, 1983 DOI:

C. Geuzaine, J. F. Remacle, “Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities”, International Journal for Numerical Methods in Engineering, Vol. 79, No. 11, pp. 1309–1331, 2009 DOI:

F. P. Incropera, D. P. De Witt, T. L. Bergman, A. S. Lavine, Fundamentals of heat and mass transfer, John Wiley & Sons, 2002


Abstract Views: 229
PDF Downloads: 132

Metrics Information
Bookmark and Share

Most read articles by the same author(s)