Α Modified EMD-ACWA Denoising Scheme using a Noise-only Model

  • I. Tellala LIS Laboratory, Department of Electronics, Ferhat Abbas Setif University 1, Algeria
  • N. Amardjia LIS Laboratory, Department of Electronics, Ferhat Abbas Setif University 1, Algeria http://orcid.org/0000-0002-7177-4260
  • A. Kesmia Department of Electronics, Ferhat Abbas Setif University 1, Algeria
Keywords: empirical mode decomposition, adaptive center weighted average, noise-only model, signal denoising

Abstract

This paper describes a modified denoising approach combining Empirical Mode Decomposition (EMD) and Adaptive Center-Weighted Average (ACWA) filter. The Intrinsic Mode Functions (IMFs), resulting from the EMD decomposition of a noisy signal, are filtered by the ACWA filter, according to the noise level estimated in each IMF via a noise-only model. The noise levels of IMFs are estimated by the characteristics of fractional Gaussian noise through EMD. It is found that this model provides a better estimation of noise compared to the absolute median deviation of the signal used in the conventional method. The proposed EMD-ACWA scheme is tested on simulation and real data with different white Gaussian noise levels and the results are compared with those obtained by the conventional EMD-ACWA, EMD Interval Thresholding (EMD-IT) and wavelet methods. Test results show that the proposed approach has a superior performance over the other methods considered for comparison.

Downloads

Download data is not yet available.

References

K. Khaldi, M. T. H. Alouane, A. O. Boudraa, “Speech denoising by adaptive weighted average filtering in the EMD framework”, 2nd International Conference on Signals, Circuits and Systems, Monastir, Tunisia, November 7-9, 2008

M. Rakshit, S. Das, “An efficient ECG denoising methodology using empirical mode decomposition and adaptive switching mean filter”, Biomedical Signal Processing and Control, Vol. 40, pp. 140-148, 2018

M. V. Sarode, P. R. Deshmukh, “Image sequence denoising with motion estimation in color image sequences”, Engineering, Technology & Applied Science Research, Vol. 1, No. 6, pp. 139-143, 2011

J. G. Proakis, D. G. Manolakis, Digital signal processing: Principles, algorithms, and applications, Prentice-Hall, 1996

D. L. Donoho, “De-noising by soft-thresholding”, IEEE Transactions on Information Theory, Vol. 41, No. 3, pp. 613-627, 1995

T. T. Cai, B. W. Silverman, “Incorporating information on neighbouring coefficients into wavelet estimation”, Sankhya: The Indian Journal of Statistics, Vol. 63, No. 2, pp. 127-148, 2001

T. F. Sanam, C. Shahnaz, “Noisy speech enhancement based on an adaptive threshold and a modified hard thresholding function in wavelet packet domain”, Digital Signal Processing, Vol. 23, No. 3, pp. 941-951, 2013

A. Mnassri, M. Bennasr, C. Adnane, “A robust feature extraction method for real-time speech recognition system on a raspberry Pi 3 board”, Engineering, Technology & Applied Science Research, Vol. 9, No. 2, pp. 4066-4070, 2019

N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shin, Q. Zheng, N. C. Yen, C. C. Tung, H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis”, Proceedings of the Royal Society of London A, Vol. 454, No. 971, pp. 903-995, 1998

Z. Wu, N. E. Huang, “A study of the characteristics of white noise using the empirical mode decomposition method”, Proceedings of the Royal Society of London A, Vol. 460, No. 2046, pp. 1597-1611, 2004

P. Flandrin, G. Rilling, P. Goncalves, “Empirical mode decomposition as filter bank”, IEEE Signal Processing Letters, Vol. 11, No. 2, pp. 112-114, 2004

G. Rilling, P. Flandrin, P. Goncalves, “Empirical mode decomposition, fractional Gaussian noise and Hurst exponent estimation”, IEEE International Conference on Acoustics, Speech, and Signal Processing, Philadelphia, USA, March 23-23, 2005

B. G. Jeong, B. C. Kim, Y. H. Moon, I. K. Eom, “Simplified noise model parameter estimation for signal-dependent noise”, Signal Processing, Vol. 96, No. 2, pp. 266-273, 2014

S. Kumar, D. Panigrahy, P. K. Sahu, “Denoising of electrocardiogram (ECG) signal by using empirical mode decomposition (EMD) with non-local mean (NLM) technique”, Biocybernetics and Biomedical Engineering, Vol. 38, No. 2, pp. 297-312, 2018

S. Poovarasan, E. Chandra, “Speech enhancement using sliding window empirical mode decomposition and hurst-based technique”, Archives of Acoustics, Vol. 44, No. 3, pp. 429-437, 2019

A. O. Boudraa, J. C. Cexus, Z. Saidi, “EMD-based signal noise reduction”, International Journal of Signal Processing, Vol. 1, No. 1, pp. 33-37, 2004

A. O. Boudraa, J. C. Cexus, “Denoising via empirical mode decomposition”, IEEE International Symposium on Control Communications and Signal Processing, Marrakech, Morocco, March, 2006

Y. Kopsinis, S. Mclanglin, “Development of EMD-based denoising methods inspired by wavelet thresholding”, IEEE Transactions on Signal Processing, Vol. 57, No. 4, pp. 1351-1362, 2009

K. Khaldi, M. T. H. Alouane, A. O. Boudraa, “Voiced speech enhancement based on adaptive filtering of selected intrinsic mode functions”, Advances in Adaptive Data Analysis, Vol. 2, No. 1, pp. 65-80, 2010

J. S. Lee, “Digital image enhancement and noise filtering by use of local statistics”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. PAMI-2, No. 2, pp. 165-168, 1980

S. J. Ko, Y. H. Lee, “Center weighted median filters and their applications to image enhancement”, IEEE Transactions on Circuits and Systems, Vol. 38, No. 9, pp. 984-993, 1991

http://www.repository.voxforge1.org/downloads/SpeehCorpus/Trunk/Audio/Main/16kHz_16bit

http: //www.physionet.org/physiobank/database/nstdb

P. Flandrin, G. Rilling, P. Goncalves, “EMD equivalent filter banks, from interpretation to applications”, in: Hilbert-Huang Transform and its Applications, World Scientific, pp. 57-74, 2005

D. Klatt, “Prediction of perceived phonetic distance from critical-band spectra: A first step”, IEEE International Conference on Acoustics, Speech, and Signal Processing, Paris, France, May 3-5, 1982

Metrics

Abstract Views: 198
pdf Downloads: 58

Metrics Information
Bookmark and Share