Emission and Noise Characteristics of a Diesel Engine Fuelled with Diesel-Chicken Oil Biodiesel Blends

  • A. A. Khaskheli Department of Mechanical Engineering, Quaid-e-Awam University of Engineering, Science and Technology, Pakistan
  • H. J. Arain Department of Energy & Environmental Engineering, Quaid-e-Awam University of Engineering, Science and Technology, Pakistan
  • I. A. Memon Department of Mechanical Engineering, Quaid-e-Awam University of Engineering, Science and Technology, Pakistan
  • U. A. Rajput Department of Mechanical Engineering, Quaid-e-Awam University of Engineering, Science and Technology, Pakistan
  • M. J. Ahsan Department of Energy & Environmental Engineering, Quaid-e-Awam University of Engineering, Science and Technology, Pakistan
Keywords: chicken frying oil, B20, B30, emissions, noise, engine

Abstract

Biodiesel is a significant renewable, safe, and environmentally friendly source of energy that produces a lesser amount of greenhouse effect gasses. The studied biodiesel source is local chicken frying oil, synthesized by the trans-esterification process. In this research, the Particulate Matter (PM) exhaust gas emissions and sound emissions are examined. Emissions such as PM (PM1.0, PM2.5, PM7.0, and PM10), nitric oxides (i.e. NO and NO2), CO, CO2, and noise were investigated at variable loads with constant engine speed. Fuel samples, i.e. pure diesel (D100) and 20% Biodiesel (B20) and 30%Biodiesel (B30) blends were tested. Conventional diesel was found to emit more particulate and sound emissions, while B30 had lower emissions than B20 and conventional diesel. The lowest average values regarding exhaust gas emissions were 0.00690ppm for PM1.0, 7.44ppm for NO2 was, and 190.727ppm for CO, presented in B30. However, emissions from the engine decreased with an increase in the blending ratio of biodiesel. Furthermore, the lowest average value of CO2 was found in B30 and was about 1.457%.

Downloads

Download data is not yet available.

References

U. Agbulut, H. Bakir, “The investigation on economic and ecological impacts of tendency to electric vehicles instead of internal combustion engines”, Duzce Universitesi Bilim ve Teknoloji Dergisi, Vol. 7, No. 1, pp. 25-36, 2019

U. Agbulut, S. Saridemir, “A general view to converting fossil fuels to cleaner energy source by adding nanoparticles”, International Journal of Ambient Energy, available at: www.tandfonline.com/doi/abs/10.1080/01430750.2018.1563822?journalCode=taen20 2019

S. Sadaf, J. Iqbal, I. Ullah, H. N. Bhatti, S. Nouren, H. U. Rehman, J. Nisar, M. Iqbal, “Biodiesel production from waste cooking oil: an efficient technique to convert waste into biodiesel”, Sustainable Cities and Society, Vol. 41, pp. 220-226, 2018

Y. Liu, Q. Tu, G. Knothe, M. Lu, “Direct transesterification of spent coffee grounds for biodiesel production”, Fuel, Vol. 199, pp. 157-161, 2017

K. A. Abed, A. K. E. Morsi, M. M. Sayed, A. A. E. Shaib, M. S. Gad, “Effect of waste cooking-oil biodiesel on performance and exhaust emissions of a diesel engine”, Egyptian Journal of Petroleum, Vol. 27, No. 4, pp. 985-989, 2019

J. M. Jung, S. R. Lee, J. Lee, T. Lee, D. C. W. Tsang, E. E. Kwon, “Biodiesel synthesis using chicken manure biochar and waste cooking oil”, Bioresource Technology, Vol. 244, pp. 810-815, 2017

G. Knothe, L. F. Razon, “Biodiesel fuels”, Progress in Energy and Combustion Science, Vol. 58, pp. 36-59, 2017

P. Zareh, A. A. Zare, B. Ghobadian, “Comparative assessment of performance and emission characteristics of castor, coconut and waste cooking based biodiesel as fuel in a diesel engine”, Energy, Vol. 139, pp. 883-894, 2017

H. Liu, X. Ma, B. Li, L. Chen, Z. Wang, J. Wang, “Combustion and emission characteristics of a direct injection diesel engine fueled with biodiesel and PODE/biodiesel fuel blends”, Fuel, Vol. 209, pp. 62-68, 2017

T. Sukjit, V. Punsuvon, “Process optimization of crude palm oil biodiesel production by response surface methodology”, European International Journal of Science and Technology, Vol. 2, No. 7, pp. 49-56, 2017

K. Manivannan, P. Aggarwal, V. Devabhaktuni, A. Kumar, D. Nims, P. Bhattacharya, “Particulate matter characterization by gray level co-occurrence matrix based support vector machines”, Journal of Hazardous Materials, Vol. 223-224, pp. 94-103, 2012

T. Wiesenthal, B. Schade, G. Leduc, L. Govaerts, L. Pelkmans, P. Georgopoulos, P. Christidis, “Biofuel support policies in Europe: Lessons learnt for the long way ahead”, Renewable and Sustainable Energy Reviews, Vol. 13, No. 4, pp. 789-800, 2009

M. M. Hasan, M. M. Rahman, “Performance and emission characteristics of biodiesel–diesel blend and environmental and economic impacts of biodiesel production: A review”, Renewable and Sustainable Energy Reviews, Vol. 74, pp. 938-948, 2017

J. Xue, “Combustion characteristics, engine performances and emissions of waste edible oil biodiesel in diesel engine”, Renewable and Sustainable Energy Reviews, Vol. 23, pp. 350-365, 2013

I. A. Resitoglu, K. Altinisik, A. Keskin, “The pollutant emissions from diesel-engine vehicles and exhaust aftertreatment systems”, Clean Technologies and Environmental Policy, Vol. 17, No. 1, pp. 15-27, 2015

X. Shen, J. Shi, X. Cao, X. Zhang, W. Zhang, H. Wu, Z. Yao, “Real-world exhaust emissions and fuel consumption for diesel vehicles fueled by waste cooking oil biodiesel blends”, Atmospheric Environment, Vol. 191, pp. 249-257, 2018

A. K. Agarwal, K. Rajamanoharan, “Experimental investigations of performance and emissions of Karanja oil and its blends in a single cylinder agricultural diesel engine”, Applied Energy, Vol. 86, No. 1, pp. 106-112, 2009

O. Can, “Combustion characteristics, performance and exhaust emissions of a diesel engine fueled with a waste cooking oil biodiesel mixture”, Energy Conversion and Management, Vol. 87, pp. 676-686, 2014

P. Geng, H. Mao, Y. Zhang, L. Wei, K. You, J. Ju, T. Chen, “Combustion characteristics and NOx emissions of a waste cooking oil biodiesel blend in a marine auxiliary diesel engine”, Applied Thermal Engineering, Vol. 115, pp. 947-954, 2017

K. Manivannan, P. Aggarwal, V. Devabhaktuni, A. Kumar, D. Nims, P. Bhattacharya, “Particulate matter characterization by gray level co-occurrence matrix based support vector machines”, Journal of Hazardous Materials, Vol. 223-224, pp. 94-103, 2012

S. M. Palash, M. A. Kalam, H. H. Masjuki, B. M. Masum, I. M. R. Fattah, M. Mofijur, “Impacts of biodiesel combustion on NOx emissions and their reduction approaches”, Renewable and Sustainable Energy Reviews, Vol. 23, pp. 473-490, 2013

E. Uludamar, E. Tosun, K. Aydin, “Experimental and regression analysis of noise and vibration of a compression ignition engine fuelled with various biodiesels”, Fuel, Vol. 177, pp. 326-333, 2016

A. A. Khaskheli, G. D. Walasai, A. S. Jamali, Q. B. Jamali, Z. A. Siyal, A. Mengal, “Performance evaluation of locally-produced waste cooking oil biodiesel with conventional diesel fuel”, Engineering, Technology & Applied Science Research, Vol. 8, No. 6, pp. 3521-3524, 2018

S. Saridemir, U. Agbulut, “Combustion, performance, vibration and noise characteristics of cottonseed methyl ester–diesel blends fuelled engine”, Biofuels, available at: www.tandfonline.com/doi/abs/10.1080/17597269.2019.1667658?journalCode=tbfu20, 2019

U. Agbulut, S. Saridemir, S. Albayrak, “Experimental investigation of combustion, performance and emission characteristics of a diesel engine fuelled with diesel–biodiesel–alcohol blends”, Journal of the Brazilian Society of Mechanical Sciences and Engineering, Vol. 41, Article ID 389, 2019

U. Agbulut, S. Saridemir, G. Durucan, “The impacts of ethanol-gasoline blended fuels on the pollutant emissions and performance of a spark-ignition engine: an empirical study”, International Journal of Analytical, Experimental and Finite Element Analysis, Vol. 5, No. 4, pp. 50-59, 2018

Metrics

Abstract Views: 114
PDF Downloads: 54

Metrics Information
Bookmark and Share