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Abstract—In this paper, an approach for conducting a 
Reliability-Based Design Optimization (RBDO) of truss 
structures with linked-discrete design variables is proposed. The 
sections of the truss members are selected from the AISC 
standard tables and thus the design variables that represent the 
properties of each section are linked. Latin hypercube sampling 
is used in the evaluation of the structural reliability. The 
improved firefly algorithm is used for the optimization solution 
process. It was found that in order to use the improved firefly 
algorithm for efficiently solving problems of reliability-based 
design optimization with linked-discrete design variables; it needs 
to be modified as proposed in this paper to accelerate its 
convergence. 
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I. INTRODUCTION  

When design variables of an optimization problem can 
assume only some predetermined values, these variables are 
discrete. One of the approaches used to handle discrete design 
variables in engineering problems is to solve these problems as 
if the design variables are continuous and adjust the optimal 
design to the nearest discrete values [1]. The interest in 
optimization problems with discrete design variables in 
structural engineering applications dates back to the 1960s. 
Early reviews about the development in this topic can be found 
in [2]. More recent treatments of discrete variables in structural 
optimization of trusses can be found in the literature [3-6]. 

In the case of trusses, only one section property is typically 
treated in the literature as a design variable for each structural 
member, namely the cross sectional area. In these cases, the 
design variables are treated as independent of each other. 
However, the optimization of most structural systems requires 
using linked-discrete design variables. Practically, a structural 
designer selects the sections from the American Institute of 
Steel Construction (AISC) standard tables [7]. If a section is 
selected from these tables, the section properties must all take 
the values pertaining to that section. Accordingly, if each 
section property is treated as a design variable, they are 
naturally linked. Treating these design variables as independent 
will surely lead to unacceptable results. In [8] the approaches 
that had been used to solve problems of this class of 
optimization to that date were reviewed. In [9] strategies to 

reduce the large computing time required to solve optimization 
problems of steel structures with standard sections were 
suggested.   

The reliability-based design optimization problem domain 
is complex and requires the application of robust search and 
optimization techniques to arrive at a near-global optimal 
solution [6]. In [10] an overview of various reliability-based 
optimization design approaches which were tested on a 
benchmark constituted of four examples using mathematical 
and finite element models, with different levels of difficulties, 
was given. One of the methods that have been efficiently used 
in solving problems of structural reliability in various 
engineering applications is the Latin hypercube sampling [6; 
11-13]. The optimization of practical structural systems 
involves a problem with discrete-linked design variables, and is 
subjected to nonlinear implicit random constraints. 
Furthermore, the gradients cannot be explicitly expressed. 
Therefore, gradient-based optimization algorithms are unlikely 
to be suitable for solving this type of problems. Global search 
methods can overcome most of the difficulties that gradient-
based algorithms cannot handle.   

Many global search algorithms have been developed over 
the past few decades. Some of the most promising algorithms 
are nature-inspired, and they are called metaheuristic 
algorithms. Among these algorithms are Genetic Algorithms 
(GA) [14], which simulate the process of natural selection, and 
the Firefly Algorithm (FA) [15], which mimics the social 
behavior of fireflies based on their flashing characteristics. 
Also, Simulated Annealing (SA) [16] models the physical 
process of heating a material and then slowly lowering the 
temperature to decrease defects, thus minimizing the system 
energy. Even though SA and GA methods do not guarantee an 
optimum solution, they provide a reasonable solution at an 
acceptable computational cost [17]. In [18] a real coded genetic 
algorithm named MI-LXPM for solving integer and mixed 
integer constrained optimization problems was developed. The 
optimum design of trusses was investigated in the literature 
using GA [4,6], SA [9], and FA [3,5]. However, the reliability-
based design optimization of trusses considering   linked-
discrete design variables using FA has not been attempted yet.  
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In this paper, an approach for conducting a reliability-based 
design optimization of truss structures with linked-discrete 
design variables is proposed. The sections are selected from the 
AISC standard tables and thus the design variables that 
represent the properties of the section are linked and discrete. If 
a section is selected from the tables, the design variables must 
take the values pertaining to that section. The Improved Firefly 
Algorithm (IFA) is used for the optimization. Latin hypercube 
sampling is used to determine the structural reliability. It is 
found that despite the strength of the IFA in solving 
deterministic optimization problems, it is unstable when used 
in probabilistic and reliability-based optimization problems. A 
modification to the IFA is proposed in order to stabilize it for 
use in probabilistic and reliability-based optimization 
problems. The modification is tested on a planner truss and a 
space truss. The performance of the IFA is investigated with 
and without the proposed modification in both truss examples. 
Then, the approach for the reliability-based design optimization 
with discrete-linked design variables is tested on a truss bridge 
and the results are compared with those of GA and SA. 

II. NOMINAL STRENGTH OF TRUSS MEMBERS UNDER 

TENSILE LOADS 

Even though a ductile steel member without holes and 
subjected to tensile loads can resist loads larger than its 
yielding capacity, due to the effect of strain hardening, the 
reaching of strain hardening in a member results in 
unacceptable deformations. Therefore, sections of a tension 
member are deemed to resist loads up to their yielding 
capacity. The presence of bolt holes may cause the member to 
fail by fracture at the net section through the holes. This 
fracture load may be smaller than the yielding capacity of the 
gross section. Accordingly, the AISC [7] states that the 
nominal strength of a tension member, Pnt, may be the smaller 
of the tensile yielding strength of the member, Pny, and the 
tensile rupture strength of the member, Pnr, given by (1) and 
(2), respectively [7]: 

Pny = FyAg

Pnr = FuAe 

In the preceding expressions, Fy and Fu are the specified 
minimum yield and ultimate tensile stresses, respectively, Ag is 
the gross area of the cross section of the member, and Ae is the 
effective net area that is assumed to resist the loads at the 
section through the holes. The effective net area is related to 
the net area, An, by [19]: 

Ae = AnU 

where U  is the shear lag reduction factor and is calculated by: 

1
x

U
l

  

where x  is the eccentricity of connection and l is the length 
where force transfer occurs as shown in Figure 1a for an angle 
member with one row of three bolts. The net area is calculated 
as [19]: 

An = Ag – ∑(dn+1/8)t 

where dn  is the nominal hole diameter and t is the thickness of 
the tension member. 
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Fig. 1: (a) A standard AISC angle section, and (b) the shear and tension planes 
in block shear failure of the angle section. 

In some cases, the strength of tension members is 
controlled by block shear strength, where the failure of a 
member may occur along a path involving tension on one plane 
and shear on a perpendicular plane [19] as shown in Figure 1b 
for an angle member with one row of bolts. The AISC specifies 
that the block strength, Pnb, is calculated as [7]:  

0 6 0 6nb u nv bs u nt y gv bs u ntP . F A U F A . F A U F A    

where Agv is the gross area subject to shear, Anv is the net area 
subject to shear, Ant is the net area subject to tension, and Ubs = 
1 or 0.5 and is 1 for most tension members. 

III. NOMINAL STRENGTH OF TRUSS MEMBERS UNDER 

COMPRESSIVE LOADS 

The nominal compressive strength, Pnc, can be calculated  
as [7]: 

Pnc= FcrAg 

where Fcr is the critical flexural buckling stress, which is 
calculated as per  [7] as given in: 
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where E is the elastic modulus, L is the length of the member, 
K is the effective length factor which is 1.0 for truss members, 
r is the minimum radius of gyration, and Fe is the elastic 
(Euler) buckling stress calculated as [7]: 
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IV. STRUCTURAL RELIABILITY 

The safety margin for truss member i, gi, also known as the 
performance function, is defined as the difference between the 
resistance of the truss member, Ri, and the internal force it is 
subjected to, Fi, and is given by: 

gi = Ri – Fi 

The resistance of truss member i can be expressed by: 

min , ,                  for tension members

                                        for compression members 
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The reliability associated with failure of truss member i due 
to the action of the internal load Fi may be represented by the 
reliability index, fi, which is given by [20]: 
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where Ri,Fi are the means of the resistance and internal force 
for truss member i, respectively, and Ri,Fi are the standard 
deviations of the resistance and internal force for truss member 
i, respectively. Similarly, the reliability index, dj, associated 
with the exceeding of truss joint j to an allowable displacement 
limit, dall, is given by: 
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where dj and djare the mean and standard deviation of the 
displacement of truss joint j, respectively. Standard deviation, 
 is related to the coefficient of variation, V, as given by:  

V  

It is assumed in the examples of this paper that the truss 
members are each connected to the joint by one line of three 
bolts of ¾ inch diameter. The modulus of elasticity, Ei, the 
yield stress, Fyi, and the ultimate tensile stress, Fui, for truss 
member i are all treated as normally distributed random 
variables with coefficient of variation 0.05 and means, 29000 
ksi, 50 ksi, and 65 ksi, respectively. The cross-sectional area, 
Ai, the eccentricity of connection, ,x  and the radius of 
gyration, ri, for truss member i are also treated as normally 
distributed random variables with coefficient of variation 0.05 
and means taken from the AISC tables for each angle section 
selected.  

V. IMPROVED FIREFLY ALGORITHM 

The FA is one of the newest algorithms which mimics the 
social behavior of fireflies based on their flashing 
characteristics. Each firefly movement is based on absorption 
of the other one’s flash [21]. Since its appearance, it has been 
through several enhancements and it has attracted many 
applications [15]. The light intensity, I(r), can be assumed to 
vary according to the inverse square law. For a medium with a 
fixed light absorption coefficient, the light intensity varies with 
the distance from the source, d, as [21]: 

2

0( ) dI r I e  

where I0 is the intensity at the source and  is the light 
absorption coefficient. In a similar manner, the attractiveness of 
a firefly, β, varies with the distance, rij, between firefly i and 
firefly j and can be calculated as [15]: 

2

0
re    

where β0 is the attractiveness at distance r = 0, γ is the light 
absorption coefficient and r is the Cartesian distance between 
firefly i and j. 

During the iterations of the FA, a pair-wise comparison of 
brightness of fireflies is conducted, where the one with lower 
light intensity moves toward the brighter one. The movement at 
iteration t of firefly i, which is attracted by a brighter firefly j, is 
given by [15]: 

( 1) ( ) ( ) ( ) ( )
0( )t t t t t t

i i j ix x x x        

where α0 is the initial randomization parameter,   is the 
randomization reduction constant, and  is a vector of random 
numbers drawn from a Gaussian distribution or uniform 
distribution in the range [0, 1]. 

In [3] an improvement to (17) was proposed. For design 
optimization problems with discrete design variables that can 
assume the index value of a standard section from a list of p 
standard sections xi = {1, 2, …, p}, the improved equation is 
formulated as [3]: 

( 1) ( ) ( ) ( ) ( )
0( ) ( 1)( 0.5)t t t t t t

i i j ix INT x x x p            

VI. MODIFICATION OF THE IMPROVED FIREFLY ALGORITHM 

In probabilistic and reliability analysis of practical 
problems, determining the exact solution is most likely 
unachievable. Most known solution techniques suitable for 
practical problems are numerical and approximate at best. In 
some reliability analysis techniques, especially simulation-
based techniques, one may repeat the solution of the same 
problem and obtain different results each time, albeit with a 
very small difference.   

In problems with integer design variables, (18) may lead to 
the same value for xt and x(t+1) in some fireflies with high 
brightness during advanced iterations. If the brightness of a 
firefly is recalculated in a new generation and the new value is 
slightly different from that in the previous generation, this 
slight difference in brightness may cause the firefly to cross a 
constraint. Accordingly, the firefly will be penalized by 
assigning a large value to its objective function and thus its 
brightness will diminish compared to other fireflies. Hence, 
chances are that the value of the optimum solution in one 
iteration may be found larger than the value of the optimum 
solution of the previous iteration. It should be emphasized that 
this issue is only encountered in problems with probabilistic 
constraints. In problems with deterministic constraints, if the 
firefly is maintained in the following iteration, its brightness of 
course remains unchanged even if the objective functions and 
constraints are re-evaluated.  
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It is proposed herein to introduce a modification to the IFA 
to solve problems with probabilistic constraints. It is proposed 
that for each iteration t > 1 and within the step where the 
brightness is compared for the updated swarm of n fireflies, the 
best firefly from the previous iteration t - 1 is included in the 
comparison and the best n fireflies are selected. The examples 
of this paper show that this modification improves the 
performance of the IFA and accelerates its convergence when 
used in probabilistic and RBDO problems. 

VII. THE OPTIMIZATION PROBLEM FORMULATION  

In the examples of this paper, the members are selected 
from the AISC standard tables for angle sections. These are 
127 angles and are arranged in this paper in a descending order 
of their weights (in pound per unit foot) in order to improve the 
optimization process. According to this order, each section is 
given an id, such that the heaviest section takes id number 1 
and the lightest takes id number 127. The design variables in 
this paper are the section id numbers for the truss members. 
Each truss member, or group of members, is assigned an 
integer design variable, where its value determines the AISC 
angle section to be selected for it. In other words, truss member 
i is assigned a design variable xi that is allowed to take one of 
the integer values from the set {1, 2, …., 127}, which represent 
the id numbers of the AISC angle sections considered. In the 
firefly algorithm, the design variables are represented by 
swarms of fireflies. Hence, once the position of a firefly is 
determined, the corresponding discrete value for each section 
property is determined from the AISC tables. 

The objective of the optimization problems in this paper is 
to minimize the weight of the structure. The weight of truss 
member i is calculated as the weight per unit foot of its AISC 
section with xi id number, W(xi), multiplied by the length of this 
member, Li, in feet. The constraints of the optimization 
problem include the reliability index associated with failure of 
the truss members due to the internal forces in each of these 

members, fi, and the reliability index associated with the 
displacement of each node in each direction, di. A lower limit 
is assigned for fi, and di and they are given values of fl, and, 
dl, respectively. The optimization problem can now be 
formulated as follows: 

Find: x1, x2 , …, xn  {1, 2, …., 127}   

To Minimize: 
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where n is the number of members, or group of members, in 
the truss and m is the number of truss nodes. In the examples of 
this paper, it is considered that fl = dl = 3.0. 

The solution of this optimization problem is an integrated 
process as shown in the flowchart presented in Figure 2. In the 
framework shown in this flowchart, a loop of optimization 
iterations of the firefly algorithm takes place. In each iteration, 
the brightness of the fireflies is determined by calculating the 
objective function and constraints. Evaluating the constraints 
requires reliability analysis of the truss. In order to conduct the 
reliability analysis, the samples of Latin hypercube are 
generated and each sample set is used as a realization of the 
truss and the load the truss is subjected to. The internal forces 
for each truss member are determined using the direct stiffness 
method to analyze each truss realization. The resistance of each 
truss member and for each realization is determined using the 
section strength equations presented in this paper. The 
distribution parameters of the truss member resistances and the 
internal forces in each member are then determined from these 
results in order to calculate the reliability indices for the truss. 
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Fig. 2.   Flowchart for the RBDO framework. 
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VIII. EXAMPLES  

A. Ten-bar planar truss 

The design optimization of the truss shown in Figure 3 has 
been investigated in different forms in the literature [3, 4, 6, 9, 
22]. The load effects, P1 and P2, are each treated as a normally 
distributed random variable with mean and standard deviation 
50 kip and 5 kips, respectively. An allowable displacement 
limit, dall, is considered as 2 in. The results are shown in Figure 
4. The details of the optimum solution are shown in Table I. 
The modified IFA was able to find the optimum solution at 
iteration 51 without problems. However, without the 
modification, the algorithm only reached the optimum solution 
at iteration 89. In addition, the best solution in iteration 4 was 
lost when the algorithm reached the end of iteration 5 and a 
best solution with higher objective value was registered at the 
end of iteration 5. The same occurred at iteration 28. 
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Fig. 3.   Ten-bar planar truss. 

TABLE I.  OPTIMUM SOLUTION FOR THE TEN-BAR TRUSS. 

Truss Member AISC Section Designation 

1 L6×4×5/16 

2 L3½×3½×5/16 

3 L3½×3×1/2 

4 L4×3½×5/16 

5 L4×3½×5/16 

6 L2½×2×3/8 

7 L3×2×1/2 

8 L4×3×3/8 

9 L2×2×1/8 

10 L3½×3×5/16 

 

In iterations, the best solution was on the boundary of the 
constraint related to the reliability index associated with failure 
of truss member 1. In order to illustrate the variability in the 
calculated reliability index for member 1, the reliability 

calculations are conducted 1000 times in an analysis isolated 
from the optimization problem. Each time the reliability index 
is determined using the Latin hypercube sampling with 10000 
samples. Accordingly, 1000 reliability indices were obtained. 
The histogram of the reliability index is shown in Figure 5. The 
figure shows, as expected, that there is a small variability in the 
reliability index. In fact, even though there is a chance that the 
reliability index has a value larger than 3.0, there is a higher 
probability that the reliability index takes values smaller than 
3.0. This explains the loss of a best solution in an iteration; as 
one of the reliability indices that satisfied the constraints in that 
iteration may have a slightly different value when re-evaluated 
in the next iteration and thus violated a constraint.  
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Fig. 4. Variation of the total weight of optimum solution with progress in 

iteration for the ten-bar truss. 

The presence of variability in a reliability analysis is 
inevitable. The small variability in the resulting reliability 
index shown in Figure 5 is acceptable. Increasing the number 
of samples in the simulation may provide lower variability in 
the obtained reliability index. However, this will impose a 
computational burden on the optimization process. As shown in 
Figure 4, the suggested modification to the IFA was able to 
protect the algorithm from deviating from the converging 
solution and converge faster. The proven robustness of the IFA 
with the suggested modification is shown to be more efficient 
in handling RBDO problems with linked-discrete variables 
than the original IFA.  
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Fig. 5.   Histogram of the reliability index associated with failure of member 1 
in the ten-bar truss. 
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B. Twenty-five-bar space truss 

Figure 6 shows a twenty-five-bar space truss, which was 
used in different forms as a benchmark for investigating design 
optimization techniques in the literature [3,6,22]. The statistical 
parameters of the normally distributed load effects are shown 
in Table II. The 25 truss members are divided into 8 groups as 
follows: {1, 2–5, 6–9, 10–11, 12–13, 14–17, 18–21, 22–25}. 
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Fig. 6.   Twenty-five-bar space truss. 

TABLE II.  LOAD EFFECT PARAMETERS FOR THE 25-BAR TRUSS. 

Node Load Direction Mean (kip) Standard Deviation (kip) 

1 X 2 0.2 

1 Y -20 -2 

1 Z -20 -2 

2 Y -20 -2 

2 Z -20 -2 

3 X 1 0.1 

6 X 1.2 0.12 

 

The optimization of the truss is investigated using the IFA 
with and without modification. An allowable displacement 
limit, dall, is considered as 0.35 in. The results are shown in 
Figure 7. The details of the optimum solution are shown in 
Table III. It is clear that the modified IFA is able to find the 
optimum solution without problems. Without the modification, 
the algorithm reached the optimum solution later in the process 
than it did with the proposed modification. Furthermore, the 
best solution was lost in two different iterations without the 
proposed modification.  
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Fig. 7.   Variation of the total weight of optimum solution with progress in 
iteration for the twenty-five-bar truss. 

TABLE III.  OPTIMUM SOLUTION FOR THE TWENTY-FIVE-BAR TRUSS. 

Truss Member Group AISC Section Designation 

1 L4×3½×5/16 

2 L2½×2×3/16 

3 L3½×2½×1/2 

4 L3×2×1/4 

5 L3½×3×3/8 

6 L2½×1½×3/16 

7 L2½×1½×3/16 

8 L6×3½×5/16 

 

C. Sixty-five bar truss bridge 

The truss bridge is shown in Figure 8. One design variable is 
used for each pair of symmetric truss members with a total of 
33 design variables. The bars are numbered from left to right 
starting from the bottom chord then the top chord then the 
diagonals. The load P is treated as a normally distributed 
random variable with coefficient of variation 0.1 and mean of 
30 kips.  An allowable displacement limit, dall, is considered as 
0.5 ft. The details of the optimum solutions obtained by the 
modified IFA are shown in Table IV. Also shown in the table 
are the results obtained by the genetic algorithm MI-LXPM, 
which was conducted using the global optimization toolbox of 
MATLAB [24]. Also, using this toolbox, the problem was 
attempted to be solved by simulated annealing, and pattern 
search methods. However, they failed to find optimum 
solutions even near those shown in Table IV. Furthermore, the 
gradient-based optimization methods in the optimization 
toolbox of MATLAB [25] were tested for solving this problem. 

 
Fig. 8.   Sixty-five-bar truss bridge. 



Engineering, Technology & Applied Science Research Vol. 6, No. 2, 2016, 964-971 970  
  

www.etasr.com Okasha: Reliability-Based Design Optimization of Trusses with Linked-Discrete Design Variables… 
` 

TABLE IV.  OPTIMUM SOLUTION FOR THE TRUSS-BRIDGE. 

AISC Section Designation 
Truss Members 

Modified IFA GA (MI-LXPM) 

1-16 L6×3½×5/16 L4×4×3/4 

2-15 L6×4×3/8 L4×4×1/2 

3-14 L5×5×5/16 L4×3×1/2 

4-13 L3½×3½×1/2 L3½×3×7/16 

5-12 L6×3½×1/2 L4×3×1/2 

6-11 L6×3½×3/8 L8×4×5/8 

7-10 L4×3½×5/16 L4×3½×5/16 

8-9 L4×3×5/16 L3½×3×1/2 

17-32 L4×3×1/4 L4×3×5/16 

18-31 L3×3×3/16 L3×3×3/8 

19-30 L5×3½×5/16 L2×2×5/16 

20-29 L3×3×5/16 L2×2×1/4 

21-28 L5×5×5/16 L2×2×1/8 

22-27 L2½×2×3/8 L2½×2½×3/8 

23-26 L3½×3½×7/16 L3½×3×3/8 

24-25 L8×6×1/2 L5×5×3/4 

33-65 L2½×1½×3/16 L2×2×3/16 

34-64 L2×2×3/16 L2½×1½×3/16 

35-63 L2×2×1/8 L2×2×1/8 

36-62 L3½×2½×1/4 L2×2×1/4 

37-61 L2×2×1/8 L2½×2×1/4 

38-60 L3×3×3/16 L2×2×3/16 

39-59 L4×4×3/8 L2½×2×3/16 

40-58 L2×2×3/8 L3×2½×5/16 

41-57 L3×2×1/2 L4×4×1/4 

42-56 L2×2×1/8 L3×2×5/16 

43-55 L4×3×1/2 L3½×2½×1/4 

44-54 L3½×2½×3/8 L2×2×5/16 

45-53 L4×4×1/4 L2½×2½×3/8 

46-52 L4×3×3/8 L3×2×3/8 

47-51 L4×3×5/16 L5×3×7/16 

48-50 L5×3½×5/16 L4×3×5/8 

49 L3½×3½×3/8 L2½×2×1/4 
Weight (lb) 14624 14344 

 

As expected, these methods couldn’t solve the problem 
either. Accordingly, the only optimization methods capable of 
handling this problem, among those attempted by the author, 
were the modified IFA and the MI-LXPM. Table IV shows that 
the total weight of the optimum solution obtained by MI-
LXPM is slightly lower than that obtained by the modified 
IFA. Figure 9 shows the improvement in the total weight of the 
optimum solution with progress in iteration. It is clear from the 
figure that even though the MI-LXPM was capable of finding a 
slightly better solution than that obtained by the modified IFA, 
the latter method converged to its optimum solution at a 
fraction of the computational cost required by the former. Thus, 
it can be concluded from this example that the modified IFA 
was capable of finding a reasonable solution, in a reasonable 
amount of computations, relative to the MI-LXPM. 

14000

16000

18000

20000

22000

24000

26000

0 50 100 150 200

Iteration

T
ot

al
 W

ei
gh

t o
f 

O
pt

im
um

 S
ol

ut
io

n 
(l

b)

GA - (MI-LXPM)

Modified Improved Firefly Algorithm

 
Fig. 9.   Variation of the total weight of optimum solution with progress in 
iteration for the sixty-five-bar truss bridge. 

IX. CONCLUSIONS 

In this paper, the structural reliability of trusses was 
considered in the design optimization process. The sections 
were selected from the AISC standard tables and thus the 
design variables that represent the properties of the section 
were linked-discrete. The IFA was used for the optimization. 
Latin hypercube sampling was used to determine the structural 
reliability. It was found that despite the well-known strength of 
the IFA in solving deterministic optimization problems, it is 
unstable when used in probabilistic and reliability-based 
optimization problems. A modification to the IFA was 
proposed in order to stabilize it for use in probabilistic and 
reliability-based design optimization problems. The proven 
robustness of the IFA with the proposed modification is shown 
to be efficient in handling the reliability-based optimum design 
problems with linked-discrete variables. Without the proposed 
modification, the IFA reached the optimum solution later than 
it did with the modification. Furthermore, it was shown by 
applying the presented approach to a sixty-five bar truss bridge 
and comparing the results with those from other methods that 
the modified IFA was capable of finding a reasonable solution, 
in a reasonable amount of computations, compared to the MI-
LXPM.  It should be emphasized that the main drawback of 
this approach is the computational cost of conducting the 
reliability analysis. Therefore, it is imperative that saving in 
computational cost during the optimization process should be a 
goal in a design optimization problem of this type.  Even 
though the MI-LXPM found a better solution in the truss 
bridge example, this solution was found in about triple the 
computational cost of that required by the modified IFA to 
obtain its optimum solution. Perhaps this conclusion should 
encourage future attempts to create a hybrid algorithm, where 
the speed of convergence of the modified IFA is exploited at 
the beginning of the optimization process, then the MI-LXPM 
is used to improve the optimum solution. 
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